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Preface

The thesis consists of four chapters preceded by an introduction and followed
by a summary. The introduction has been written with the intention to be
understandable also for the reader who is not specialized in the field. The
chapters are based on papers which were published or submitted for publication
in scientific journals. These papers are self-contained, and each of them may be
read independently of the others. Details are listed below:

1. Chapter 1 is based on the paper by W. Hundsdorfer, A. Mozartova,
M.N. Spijker: Stepsize conditions for boundedness in numerical initial
value problems, SIAM J. Numer. Anal. 47 (2009), 3797-3819.

2. Chapter 2 is based on the paper by W. Hundsdorfer, A. Mozartova, M.N.
Spijker: Special boundedness properties in numerical initial value prob-
lems, BIT, 51, 4 (2011), 909-936.

3. Chapter 3 is based on the paper by W. Hundsdorfer, A. Mozartova, M.N.
Spijker: Stepsize restrictions for boundedness and monotonicity of multi-
step methods, J. Sci. Comput. 50, 2 (2012), 265-286

4. Chapter 4 is entitled Comparison of Boundedness and Monotonicity Prop-
erties of One-Leg and Linear Multistep Methods, a joint work with W. Hunds-
dorfer, to be submitted.

The main conclusions obtained in this thesis are listed in the summary at
the end of this thesis.
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Introduction

0.1 Monotonicity for time discretizations

From science, engineering, economics and the financial sciences frequently prob-
lems arise that need mathematical modelling for their solutions. Examples range
in scale from the behaviour of cells in biology to the formation and development
of galaxies. For such problems the solutions of the mathematical models quite
often can’t be achieved without resorting to the methods of numerical mathe-
matics.

Systems of ordinary differential equations (ODEs) naturally arise when mod-
elling processes that evolve in time. For example, systems of ODEs often model
the motion of a body by its position and velocity; the evolution of chemical
and biological species; the change of the temperature of an object in a given
environment; and even the dynamics of the price of a stock.

Many interesting systems have solutions with steep gradients. Numerical
approximations to such solutions often exhibit strong numerical oscillations,
leading to non-physical over- and undershoots. In this thesis we discuss mono-
tonicity properties of time discretizations. The preservation of monotonicity
properties is essential for numerical schemes to approximate non-smooth solu-
tions in a qualitatively correct manner, which means to avoid oscillations in the
numerical solutions.

Initial value problems. Consider a process that evolves in time. Usually,
the state of the process is known at a particular initial moment whereas its
evolution has to be determined. One then arrives at an initial value problem
(IVP) for a system of ODEs.

In this thesis we consider IVPs for general systems of ODEs in a vector space
V for t > 0 with given initial value ug, written as

Gty = P(u(t)), u(0) = uo, M

where F' : V — V is a given function. The problem then is to find u(t) € V
for ¢t > 0. In numerical applications, V will be a finite dimensional vector space;
typically V.= RM or CM,

Much study has been devoted to the solution of (1). Unfortunately, in most
problems that arise in practise a useful analytical expression for the solution
cannot be obtained. Therefore, it is common to seek approximate solutions by
means of numerical methods.

Approximations u, to the true solution values u(t,) at ¢, = nAt can be
obtained by a time stepping method with a positive time step At and n =
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1,2,3,.... We will say that a time stepping method is of order p, if for any
fixed ODE with a sufficiently often differentiable function F' the temporal error
satisfies

[lu(tn) — unl| < C - AP

with some constant C' > 0 and under a certain norm || - ||.

The basic assumption on F. Let || - || be a norm, a seminorm or a
sublinear functional on V. Recall that || - || : V — R is called a sublinear
functional if

llaw + Bwl| < af|v]] + B |w]]

for all a, >0 and v,w € V. It is a seminorm if we have in addition
[ =l =lv[=0
for all v € V. If it also holds that
[lv]l =0 ounly if v =0,

then || - || is a norm. In the following we will often consider the mazimum norm
[[v]|oc = max(|v1],...,|vam]) or the total variation (TV) seminorm ||v||lry =
> j=1 [vj—1 — v;| for any vector v € RM with components v; and vy = vas.

In many papers one starts from an assumption about F’ which, for a given
70 > 0, amounts to

o+ 7F@)| < |v] foralveV, (2)

see e.g. Gotlieb, Ketcheson & Shu (2011). As we will see shortly, this assumption
is relevant to many systems obtained by spatial discretization of a conservation
law with suitable (semi-) norms.

It is easy to see that (2) implies ||v + AtF(v)|| < ||v|| for all at < 7.
Consequently, applying the forward Euler method

Up = Up—1 + ALF (tp—1)
for n > 1 with step size At > 0, we obtain
lun| < fluol|  forn >1, (3)

under the step size restriction At < 7. Property (3) will be referred to as
monotonicity or strong stability of the numerical scheme. The largest 7y for
which (2) holds can be viewed as the maximal step size giving monotonicity
with the forward Euler method.

If F satisfies a Lipschitz condition then the forward Euler method does
convergence to the exact solution on any bounded time interval [0,T7], see
e.g. Hairer, Norsett & Wanner (1993). In this case we can conclude

lu@®I] < [lu(O)I]  for all >0, (4)
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showing monotonicity of the exact ODE solution.
For many ODE’s, the basic assumption (2) is also necessary for (4). This is
illustrated by the following example.

Example 0.1.1. Consider the scalar, complex test equation u/(t) = Au(t) with
A €V = C. This equation is known in numerical mathematics as the Dahlquist
test equation, and the behaviour of numerical methods applied to this equation
is often studied. Let ||-|| = |-| modulus. Then the basic assumption (2) is valid
if and only if

|1+ 7m0M < 1. (5)

Note that the set of A satisfying (5) is a disc with a centre in —1/7y and radius
1/79. On the other hand, since u(t) = e*u(0), (4) holds if and only if

Re) <0, (6)

that is the left half-plane including the imaginary axis. Only for the boundary
case where Re A = 0 and A # 0 we do have (4) but not (2). If Re A < 0 then the
basic assumption (2) holds for some 79 > 0. Therefore it is seen that the basic
assumption is not only sufficient but also necessary if ReX < 0. <&

The problem with the forward Euler method is that it is only first order
accurate in time. We want to consider higher order methods. A method will
be called strong stability preserving (SSP) if there is a v > 0 such that ||u,| <
|ltr—1]] whenever the basic assumption (2) holds and At < y7. The goal is
now to specify such stepsize coefficients v. The maximal stepsize coefficient
is often called the monotonicity threshold.

In the next example we will show how, starting from the basic assump-
tion (2), one can derive monotonicity properties for some other time stepping
schemes.

Example 0.1.2. The implicit Euler method
Up = Up—1 + ALF (uy,)

is monotone under assumption (2) with any given sublinear functional or semi-
norm || - ||, without any time step restriction (y = oo). This is easily seen
from

At At
(1 + —)un =Up_1+ — (un + ToF(un)),
0 0

Al Al
(14 =) unll < lnall + = funl
70 70

showing ||un|| < ||un—1]| for any At > 0.
The implicit trapezoidal rule

Uy = Up—1 + %AtF(un,l) + %AtF(un)
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has stepsize coefficient v = 2. This follows from the fact that the method
consists of a forward Euler half-step followed by a backward Euler half-step
(with $At).

The explicit trapezoidal rule (modified Euler)

Up = Up—1 + ALF (Up—1), Up = Up_1 + %AtF(un_l) + %AtF(ﬁn)

has stepsize coefficients v = 1. This becomes more apparent by writing the
second stage as
1 1/- _
Uy = Un—1 + 5(”” + AtF(un)).
Later we will see that v = 2 for the implicit trapezoidal rule and v = 1 for
the explicit trapezoidal rule are optimal. <&

From these simple examples we see that methods have to be rewritten some-
times in a form that is more convenient to make the monotonicity apparent.
More importantly, we see that there is no direct relation with the usual lin-
ear stability properties of the methods for the test equation v’ = Au, \ € C.
After all, the implicit trapezoidal rule is A-stable, i.e., (3) holds for this test
equation with any A € C, ReA < 0 without any restriction on the time step
At > 0, whereas its explicit counterpart is only conditionally stable. In fact, the
backward Euler method will turn out to be the only well-known method with
threshold value v = co.

0.2 Scalar conservation laws in one spatial di-
mension

In the examples in this thesis time stepping methods are used for solving or-
dinary differential equations arising from a spatial discretization of partial dif-
ferential equations (PDEs). ODE problems with non-smooth solutions often
come from a spatial discretization of hyperbolic PDEs, which pose particular
difficulties for numerical methods because their solutions typically contain dis-
continuities.

0.2.1 Hyperbolic conservation laws.

A PDE of the form
ut + (f(u))z =0, (7)

with appropriate initial and boundary conditions, is called a conservation law.
Here u is a function of x and ¢, and the subscripts refer to partial derivatives;
for example, u; = %u. In (7), the function u usually represents the density of
some quantity and f(u) the fluz. Conservation laws arise in fluid dynamics and
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many other fields. By integrating in z, we see that for any x1 < x4, the integral
of u over [z1,x2] changes only because of fluxes through the endpoints:

x2

7 | ulet)de = flu(et) = flu(z,t)). (8)
1
A well-known nonlinear example of a conservation law is the inviscid Burgers
equation,
ug + (%uz)w =0. 9)

This equation appears in studies of gas dynamics and traffic flow, and it serves as
a prototype for nonlinear hyperbolic equations and conservation laws in general.

A crucial phenomenon that arises with the Burgers equation and other con-
servation laws is the formation of shocks, which are discontinuities that may
appear after a certain finite time and then propagate in a regular manner. Fig-
ure 1 shows an example.

FIGURE 1: Formation of a shock.

Figure 1 is not as straightforward as it looks. It suggests that a shock
simply forms and propagates. But (9) is a PDE, defined by derivatives that do
not exist for discontinuous functions. A question arises: in what sense do these
discontinuous curves satisfy the PDE?

To answer this question we define weak solutions by working with the con-
servation principle (8) rather than the PDE. A weak solution of (9) or (7) is
a function u(x,t), not necessarily smooth, that satisfies the underlying integral
conservation law

/ " ulesta) — ule,t))da + / C[Fu(wa 1) — flulas, )dE =0, (10)

1 t1

for all z; < x5 and ¢; < t5. Then this is the solution to be approximated by the
numerical scheme.

From (8) or (10) one can derive the velocity s of a shock that separates
states uy, and ugr on the left and right of a discontinuity. The result is the
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Rankine-Hugoniot formula

_ flur) = f(ur)

ugp —up
see e.g. LeVeque (2002). Hence for the Burgers equation (9) we have s =
1(ur +ug). In Figure 1, the shock has velocity exactly 1/2.
However, weak solutions to (10) may be not unique. In such a situation,
we can modify the differential equation slightly by adding a small amount of
viscosity, or diffusion, obtaining

ur + (f(u))e = ety (11)

where € > 0 is a constant. If € is very small, then we might expect solutions
to (11) to be very close to solutions of (7), which has e = 0, see e.g. LeVeque
(2002). However, the equation (11) is parabolic rather than hyperbolic, and it
can be proved that for any ¢ > 0 this equation has a unique solution for all time
t > 0, and it is smooth. The curves of Figure 1 are what one obtains by taking
the limit ¢ — 0. The idea of introducing the small parameter € and looking at
the limit ¢ — 0 is called the wvanishing-viscosity approach to define a sensible
solution to the hyperbolic equation. This simple idea is the right one, from a
physical point of view, in many applications.
To get the solution obtained by the method of vanishing-viscosity, for convex
f, one must impose the additional condition that shocks are permitted only if
they satisfy
Flur) > s> flug). (12)

This is called an entropy condition. For a nonconvex flux functions f, the
corresponding conditions can be found in LeVeque (2002). For the Burgers
equation (9), the entropy condition reads uy > s > ug.

Often, for conservation laws with discontinuous solutions which are nonoscil-
lating or positive, numerical methods do produce spurious oscillations or nega-
tive values, respectively. To avoid this, we need suitable discretizations in space
and time.

0.2.2 Spatial discretization

In many applications the ODE system (1) is obtained by spatial discretization
of a partial differential equation. As mentioned above, the concept of mono-
tonicity preserving time stepping methods often arises in the numerical solution
of hyperbolic partial differential equations with discontinuous solutions.

As an interesting example, consider the one-dimensional scalar conservation
law

ur + f(u)y =0 t>0,0<z<]), (13a)

together with a given initial profile and periodic boundary condition

u(z,0) = uo(x), u(0,t) =u(l,t). (13b)
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We would like to find a numerical approximation u in which the spatial deriva-
tive f(u), has been discretized on a grid {z;} in the interval (0,1). The result
is then a system of ODEs, called the semi-discrete system,

u'(t) = Flu(t)). (14)

Here u(t) is a vector in RM with components w;(t) approximating the PDE
solution at the grid points, u;(t) ~ u(x;,t), or approximating the averages over

zi+iAz
the cells, u;(t) = fzi_gmc u(x, t)dx.
Let ua, be the appropriate restriction of the PDE solution to the grid, either
as point values (finite differences) or as cell averages (finite volumes). Then a

spatial discretization is said to be of order g, in a suitable norm || - || on RM | if
|[ua,(t) = Fuaz(t)]] = O(az?). (15)

First-order upwind discretization. Suppose that the flux function f is
differentiable and f’(w) > 0 for all w € R. Using first-order upwind spatial
discretization

1
Ax

(f(u(e — az)) = f(u(@))) = —f(u(z)): + O(a2), (16)

on a uniform mesh with mesh width Az = 1/M leads to the semi-discrete system

1

flui—1(t)) _f(uz(t)))ﬂ i=1,..., M, (17)
where u;(t) approximates u(x;,t) at the grid point z; = iAz. Due to spatial
periodicity we have ug(t) = ups(t).

This semi-discrete system fits in the general ODE form (1) with V = RM and
the components of F'(v) given by F;(v) = Az~ (f(vi1) — f(v)), i =1,..., M,
where vy = v);.

If f/(w) <0 then the semi-discrete system (17) should be replaced by

(t) = - (fut) - Flun(0), i

= 1
Ax

LM, (18)

where up11(t) = uy(t).

The first-order upwind scheme is very diffusive and often not accurate enough
in applications. Since the global space-time discretization error is a sum of the
spatial error and the temporal error, to obtain a fully discrete numerical solu-
tion of order two, for example, we need both spatial and time discretizations at
least of order two. Therefore, to show the relevance of our theory for higher-
order time stepping methods we will use in the following higher-order spatial
discretizations. On the other hand, common higher-order spatial discretizations
produce oscillatory solutions with the possibility of negative values that may
be non-physical; for example, for densities or concentrations. Undesirable nega-
tive approximations can always be just "cut off" to achieve non-negativity. But
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this can destroy the conservation property, leading to incorrect shock speeds,
because we are adding mass. Moreover, we do not eliminate under- and over-
shoots.

In the following we will show for the hyperbolic problem (13) how to achieve
a spatial discretization that has better accuracy than the first-order upwind
scheme and at the same time positive solutions without under- and overshoots.
For this we will use a technique called limiting.

Discretization by flux limiting. Consider again a hyperbolic conserva-
tion law (13) with f differentiable and f/(w) > 0 for all w € R. (This last
assumption is only for convenience of the presentation.) The spatial discretiza-
tion is taken on a uniform grid, with grid points z; = iAx, as

_1
Az

(Flui3) = Fluiyy). (19)

1
2

where the values w41 () approximate u(z;11,t) at the cell boundaries ;1
These approximate values, expressed in terms of neighbouring values w;(t),
determine the actual discretization. A spatial discretization in this form (19) is
said to be in fluz form or conservation form.

As an example, the so-called third-order upwind-biased scheme is obtained
by taking

Uiyl %( — Uj—1 + du; + 2u¢+1) =u; + (% + %91) (Ui+1 - Ui),

where 6; is the ratio
U; — Ui—1

, - (20)

Uip1 — Ui
see e.g. Hundsdorfer & Verwer (2003). The resulting scheme can be shown
to be of order three when interpreted as a finite volume scheme. This spatial
discretization does however introduce some numerical oscillations.

Spatial discretizations in the flux form (19) that will give better accuracy
than first-order upwind, but do not give rise to numerical oscillations, can be
achieved by modifying the fluxes of higher-order discretizations by the so-called
limiting technique. We consider the formula

Ujp L = Uy +p(0:) (wig1 — uq), (21)

where 1) is called the limiter function. We will choose this limiter function such
that ¢ (0) = 0,

0<¢() <1 and 0<y()/0 <1 forall 0eR, (22)

where 0/0 is taken as 0.
This property (22) holds with the limiter function

(0) = max (0, min(1, 3 + £6,0)) (23)
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which coincides with the original third-order upwind-biased function (0) =
% + %9 for % < 0 < 4. This limiter function was introduced by Koren (1993).
Another example of a limiter function satisfying the conditions is

0410
vio) = §- P (29)

introduced by van Leer (1974).
For a smooth solution profile we have 6; =~ 1, except near extrema. If we
take the Koren limiter (23), which gives

W(0) =3 +30 forf~1,

then the accuracy of the third-order scheme will be maintained in smooth regions
away from extrema. With the van Leer limiter (24), linearization of the limiter
function near § = 1, i.e. replacement of ¢ () by (1) +¢'(1)(0 — 1) = 1 + 16,
gives the so-called Fromm scheme, which is of order two, again in smooth regions
away from extrema.

Remark 0.2.1. The development of a discontinuity from a smooth initial func-
tion is a typical property of nonlinear hyperbolic equations. For example, the
formation of a shock in fluid flows is described by such equations. For the hy-
perbolic problem (7), correct discretizations are important to have a correct
propagation of the discontinuities. With a semi-discrete scheme (19) in conser-
vation form we can expect that a steep travelling front or shock is computed
in the correct location. Lax and Wendroff (1960) proved that if the numeri-
cal approximations converge to some function, then this function will in fact
be a weak solution of the conservation law, and it will therefore satisfy the
Rankine-Hugoniot relation for the shock speed. In LeVeque (1992, Fig.12.1)
the importance of the conservation form for the discretization is illustrated for
the inviscid Burgers equation (9). &

Properties of the semi-discrete system. Consider a spatial discretiza-
tion in the flux form (19) with (21) and limiter function (23), (24), or ¢ = 0
(first-order upwind). As before, it is assumed that the flux function f is differ-
entiable, and we also assume that there is an o > 0 such that

0< fl(w)<a  forall weR. (25)

It will be shown that the resulting semi-discrete system of ODEs (14) satisfies
the basic assumption (2) in the maximum norm and TV seminorm.

The basic assumption (2). Taking F;(u) = Axfl(f(ui_%) — f(ugy 1)), it is
seen from the mean value theorem that

AT 3 it

=
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with v; some intermediate point between u,;_ 1 and wu; 1 We also have

U,

75—

) = (1= 9(01) + 5-0(0:)) (wi1 — ws), (26)

with 0 < (1 —(0;—1) +9(6:)/6:) < 2.

Consequently, using a spatial discretization in the flux form (19) based on
(21) with Koren limiter or the van Leer limiter, on a uniform mesh with width
Az = 1/M, leads to an initial value problem u' = F(u), u(0) = wug, with
V = RM™ | for which the components of F(u) can be written as

_Ui+%

2c
Fi(u) = Bi(uw)(ui—1 —ug), 0<Bi(u) < ~ (27)
fori=1,..., M, where up = up;. From this observation it easily follows that
Az

the basic assumption (2) will be satisfied in the maximum norm with 7o = 5.
With the same 7 it can also be shown quite easily that condition (2) will be
satisfied with the TV seminorm.

Note that in this example, the use of first-order upwind spatial discretization
gives Fi(u) = Bi(u)(u;—1 — u;), with 0 < B;(u) < <= instead of (27). Then
condition (2) will be satisfied in the maximum norm and the TV seminorm
with 79 = % But then we only have first-order accuracy.

The Lipschitz condition. For the discretizations with a limiter, the values at
the cell boundaries can be written as

Uiy = h(ui—1, Ui, uig1),

where the function h : R® — R is given by formula (21). Let us take as an
example the Koren limiter (23); for the van Leer limiter (24) the following
arguments will be similar. Due to the ratios #; in the limiter, it is not obvious
that the function h will satisfy a Lipschitz condition, but in fact it does. This
result seems not available in the standard literature, and therefore it will be
indicated here how to prove it.

For this, first note that

h(ui,l,ui,uiﬂ) = u; + @b(dl,l/dl) . di, di = Ui+1 — Uy for all 4.

The function g(£,m) = ¥(n/€) &, from R? to R, is continuous on R?, and it is
differentiable in the arguments &, 7, except for the special cases £ = 0, n = 0,
n = %5 and n = 4£. Away from these four lines in R?, the partial derivatives
are uniformly bounded,

Zgenm| =@ - @0 <143, |ZgEn| =l <1,

with § = n/&. Tt follows that g satisfies a Lipschitz condition on R2.
Using this, it now seen that the function h satisfies a Lipschitz condition

on R3, from which it is also clear that the function F will satisfy a Lipschitz
condition on RM for fixed M.
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0.3 Monotonicity properties

There are many related monotonicity properties. In this section we will consider
two examples of such properties by considering different seminorms or sublinear
functionals.

Example 0.3.1. A notable monotonicity property is the so-called total varia-
tion diminishing (TVD) property:

l|un|lTv < [Jun—1]|Tv forn > 1, (28)

which means that the total variation of the numerical solution does not in-
crease. This property frequently appears in the literature on computational
fluid dynamics.

Instead of the TVD property, we can consider the more general total varia-
tion boundedness ( TVB) property, for which it is required that a finite p exists
such that, for all n > 1 and any uy,

unllry < g uollzv- (29)

With nonlinear conservation laws (7) this property is often crucial to obtain
convergence towards the physically relevant solution. It was shown in Harten,
Hyman & Lax (1976) that if the numerical scheme satisfies the TVB property
and the physically relevant solution is identified by the entropy condition (12),
then convergence towards the correct solution is guaranteed. <&

Example 0.3.2. Another related monotonicity property is preservation of non-
negativity:
un, >0  whenever ug > 0,

where inequalities for vectors in R™ should be interpreted component-wise.
This property is often called positivity, which is short but not entirely correct.
It is often necessary to ensure a correct physical meaning of approximations.
For example, for problems whose solutions are concentrations. Such problems
arise frequently when modelling chemical reactions or semidiscretizing PDEs of
advection-diffusion type. Solving such problems numerically with nonnegative
initial vectors, it is natural to demand nonnegativity of the resulting numerical
approximations. For linear systems of ODEs nonnegativity was investigated by
Bolley & Crouzeix (1978). Later nonnegativity preservation theory for nonlinear
problems was developed by Horvath (1998, 2005).

To illustrate that preservation of nonnegativity can also be cast in our gen-
eral framework with sublinear functionals, we consider

[lv]l]o = — min{0, vy, ...,vpr} for v = (v1,va,...,va)T € RM. (30)

It was shown above that flux limiting gives a semi-discrete system for which the
basic assumption (2) is satisfied in the maximum norm and TV seminorm. Using
similar arguments, it follows that the basic assumption (2) is satisfied with this
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functional ||-||o and 79 = % for any ODE system (27). Here we have ||v||p = 0 if
and only if v > 0, that is all components of v are nonnegative. Consequently, the
monotonicity property (3) then implies nonnegativity for these ODE systems.
Therefore from monotonicity for arbitrary sublinear functionals one can con-
clude nonnegativity. The example also illustrates that apart from (semi-)norms
it is useful to consider sublinear functionals, because this leads to such an im-
portant property as preservation of nonnegativity. O

There are other related monotonicity properties, for example the mazimum
principle

minugj < up; < maxug; foralln>0and 1 <i< M,
J J

where the w,, ;,10,; are the components of the vectors u,,uo € RM . This can
be associated with the absence of unwanted global overshoots and undershoots,
and it can be cast in the general framework (2), (3), by introducing suitable
sublinear functionals, see e.g. Spijker (2007).

0.4 Numerical Illustrations

To demonstrate questions which can be solved using monotonicity and bound-
edness theory, we consider two numerical illustrations.

Two-step Adams-Bashforth (AB2) time discretization. Consider the
advection equation

U+ Uy =0 for t>0, 0<z<1, (31)

with periodic boundary condition u(0,t) = u(1,¢) and an initial block profile:

u(z,0) =1 if 0.4 <2 <0.6;
u(z,0) =0 otherwise.

The advection equation (31) has the general solution u(z,t) = u(x—t,0), reveal-
ing that the initial profile is transported without change of shape along parallel
straight characteristic lines. Note that the block function is discontinuous and
hence not differentiable. Consequently, the characteristic solution is not a so-
lution of the differential equation in the classical sense. It is a solution of the
underlying integral conservation law.

The spatial discretization is taken on a uniform grid with mesh width Az =
1/M, where M is the total of grid points, using Koren limiter scheme (see
Section 0.2.2 above for the semi-discrete form). This gives us a semi-discrete
system of ODEs for which the monotonicity assumption (2) is satisfied for 79 =
0.5Az in the maximum norm and TV seminorm.
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FIGURE 2: The red line is AB2 solutions at ¢ = 1 for the linear advection equation
with At = 0.25Az. The blue dashed line is an exact PDE solution.
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FIGURE 3: The red line is AB2 solutions at ¢ = 1 for the linear advection equation
with At = 0.5Az. The blue dashed line is an exact PDE solution.

To discretize the resulting nonlinear semi-discrete system of ODEs in time
we take the well-known two-step Adams-Bashforth method

1
Uy = Up—1 + gAt F(up—1) — §At F(up—2). (32)

This method has order 2, as defined in Section 0.1. The first approximation
is computed by the forward Euler method: w1 = ug + AtF (up).

Numerical solutions are shown in the Figures 2 and 3, with spatial compo-
nent x horizontally for the output time ¢ = T with 7' = 1. Dashed lines indicate
the exact PDE solution. The behaviour of the scheme is seen to be very different
from Figure 2 to Figure 3. Whereas for At/Ax = 0.25 we get a nice monotonic
behaviour, the scheme with At/Az = 0.5 produces large oscillations.

Let us first consider the results with At/Axz = 0.25. The scheme gives
results close to the exact solution, see Figure 2. In this case the values |[un||ryv
are constant equal to 2 for all observed M, and the discrete L; errors ||uy —
w(D)| (vl = >, Jvil, N = T/At and u(T) is the exact solution) go to
zero for increasing M, see Figure 4. On the other hand, for At/Az = 0.5, in
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FIGURE 4: Values of |[un||p (left picture) and ||uny —u(T")||1 (right picture) for M =
200, 400, 800, 1600, 3200 and the AB2 method with At = 0.5Az (blue line, % markers),
At = 0.25Az (red line, o markers).

Figure 3, we see that if At and Az are decreased while keeping At/Ax fixed,
the oscillations become more and more pronounced. The evolution of the total
variation seminorm and L; norm is shown in Figure 4 revealing a marked growth
for increasing, large values of the dimension M if At/Az = 0.5.

For this well-known second order Adams-Bashforth method the different be-
haviour according to At/Ax can be explained by the monotonicity and bound-
edness theory presented in this thesis in Chapters I and III. Furthermore, in
Chapter III we will answer the question: what is the largest At for the AB2
method such that the behaviour is monotonic with the forward Euler starting
procedure uy = ug + AtF (up)?

Two-step backward differentiation formulas (BDFs). As a next illus-
tration, we consider the Buckley-Leverett equation

CU2

et fu)e =0, fu) = Ze i

(33)
This equation provides a simple model for two immiscible fluids in a porous
medium and has applications in oil-reservoir simulation. The unknown u here
represents the saturation of water in an oil reservoir and lies between 0 and 1.
The constant ¢ > 0 gives the mobility ratio of the two fluid components.

We consider this problem with ¢ =3, 0 <t < 1 and 0 < = < 1 with inflow

condition u(0,t) = % and an initial block-function:

u(z,0) =3 if z=0;

u(z,0)=0 if 0<z<3;
u(@,0)=1 if <z <1

The flux function f is monotonically increasing for 0 < w < 1. The solution is
shown in Figure 5 with the blue dashed line.

We use a fixed grid with mesh width Az = 5-1073. For spatial discretization
we use the limited conservative scheme (19) based on (21) with van Leer limiter
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(24). With limiting the semi-discrete solution is accurate, only the shocks are
slightly diffused, over a few grid cells. Figure 5 shows the initial profile and a
time-accurate reference solution which corresponds to the exact solution of the
semi-discrete system.

15
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FIGURE 5: The initial profile (green solid line) and a time-accurate semi-discrete
solution (blue dashed line) at ¢ = 1/4 for the Buckley-Leverett equation.

The resulting semi-discrete system is integrated by the implicit 2-step BDF
method

4 1 2
Uy = gun,l — gun,g + gAtF(un) (34)
and its explicit counterpart, the extrapolated BDF2 method
4 1 4 2
Uy = gun,l — gun,g + gAtF(un,l) — gAtF(un,g). (35)

The first approximation u; for (34) is computed by u1 = ug + AtF(uq) and for
(35) by u1 = ug + AtF (up). Both methods have order 2. To solve the algebraic
system for the implicit method, a Newton-type iteration is used. It is stressed
that per step the implicit method is much more costly than the explicit one.
Hence the implicit method can only be efficient if it allows much larger time
steps than the explicit method. The implicit method is A-stable, G-stable, see
e.g. Butcher (2003) or Hairer & Wanner (1996). In a von Neumann analysis,
assuming a smooth PDE solution, linearization and constant (frozen) coeffi-
cients, this would give unconditional stability, whereas stability of the explicit
method implies that the ratio At/Az can be no more than about 0.5, with the
present with the present spatial discretization. But, as we will see below, the
two schemes have approximately the same monotonicity threshold.

We use this example to illustrate once more the importance of monotonicity.
Due to the monotonicity restriction, the implicit BDF2 method cannot be used
with large time steps if undershoots and overshoots are to be avoided. In the
Figures 6 and 7 the numerical solutions at time ¢ = i are plotted as functions
of x with solid lines. Dashed lines indicate a time-accurate semi-discrete so-
lution on the same grid. In Figure 6, where At = 0.25Az, both methods give
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FIGURE 6: BDF2 solutions at ¢ = 1/4 for the Buckley-Leverett equation with
At = 0.25Az. The dashed line is a time-accurate semi-discrete solution (Az = 5-107%).

1.5 1.5
extr.BDF2 impl.BDF2

0.5

0.2 0.4 0.6 0.8 1 o 0.2 0.4 0.6 0.8 1

FIGURE 7: BDF2 solutions at ¢ = 1/4 for the Buckley-Leverett equation with
At = 0.5Az. The dashed line is a time-accurate semi-discrete solution (Az = 5-107%).

results close to the exact semi-discrete solution. However, if the time step size
is increased to At = 0.5Az we see from Figure 7 that now the explicit solu-
tion becomes unstable, but at the same time the implicit solution becomes very
inaccurate: both the shock speed and the shock height are no longer correct.
This disappointing qualitative behaviour of the implicit method is due to loss of
monotonicity for large step sizes, giving over- and undershoots after the shocks.

0.5 Monotonicity and boundedness properties
for RKMs, LMMs and GLMs: reviewing
some literature

In this thesis we deal with general time stepping methods of Runge-Kutta or

linear multistep type. Such methods, and others, all fit in the framework of
general linear methods.
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0.5.1 Runge-Kutta methods

The general Runge-Kutta method (RKM), for computing u,, for n = 1,2,...,
can be written in the form

y = At Y ag FY) (1<i<s), (36a)
j=1

Un = U1 + ALY by F(y). (36b)
j=1

Here a;; and b; are parameters defining the method. Furthermore, the vectors
yz["] (1 <i < s) are internal approximations used for computing w,, from wu,_1,
cf. e.g. Butcher (1987) or Hairer, Ngrsett & Wanner (1993). If a;; = 0 (for
j > 1), the method is called exzplicit. Define the s x s matrix A by A = (a;5)
and the column vector b € R® by b= (b1, bs,...,bs)7.

For method (36), much attention has been paid in the literature to the
monotonicity property

I < lun—all  (for 1<i <), (37a)
et l| < Jtn—s]]- (37D)

For classes of RKMs, positive stepsize-coefficients ¢ were determined, such
that monotonicity, in the sense of (37), is present for all At with

0<at<c- 1y,

as long as the basic assumption (2), associated with the forward Euler method,
is satisfied. For explicit RKMs, this was done by rewriting the right-hand
members of (36) as convex combinations of forward Euler steps; see e.g. Shu
& Osher (1988), Spiteri & Ruuth (2002), and Ruuth (2006). For more general
RKMs, stepsize-coefficients were obtained, e.g., in Gottlieb, Shu & Tadmor
(2001), Ferracina & Spijker (2004), Higueras (2005) and Spijker (2007, Section
3.2.1).

An important characteristic quantity for Runge-Kutta methods was intro-
duced by Kraaijevanger (1991). Following this author we denote his quantity
by R(A,b), and in defining it, we focus on values £ < 0 for which

(I —£A) is invertible, A(I —&A)"1 >0, bI(I—-¢A)~1 >0, (38)
(I—-¢A)te>0 and 1+&7(I—-¢EA) te>0.

Here I denotes the identity matrix of order s, and e stands for the column

vector in R® all whose components are equal to 1. All inequalities for matrices

and vectors should be interpreted entry-wise and component-wise, respectively.
Then for a given RKM, the number R(A,b) is defined as

R(A,b) = sup{r: r >0 and (38) holds for all £ with —r <& <0}.
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In case at least one of the inequalities A > 0, b > 0 is violated, R(A,b) = 0 is
defined. For an arbitrary explicit Runge-Kutta method with s > 1 of order p,
it was shown by Kraaijevanger (1991) that

R(AbD)<s—p+1 if1<p<s.

Special attention was paid to the problem of determining, for a given RKM,
the corresponding maximal stepsize coefficient ¢. In Higueras (2004, 2005),
Ferracina & Spijker (2004, 2005) conditions were derived under which this co-
efficient equals R(A,b). Earlier results about R(A,b) were extended in Spijker
(2007, Section 2.2).

0.5.2 Linear multistep methods

Runge-Kutta methods are sometimes referred to as ome-step methods, since
they evolve the solution from ¢, to t,, without needing to know the solutions
at t,_o,t,—3,---, etc. There is a broad class of more sophisticated integration
methods, known as linear multistep methods, which for computing u,, use the
previously calculated w,_1,un—2, -+ ,un—k (for a k-step method). The main
advantages of Runge-Kutta methods are that changes in the stepsize are easy
to implement, and, in contrast to multistep methods, we do not have to compute
the first few steps by some other (one-step) integration method. The advantage
of linear multistep methods is that they require significantly fewer computations
per step than Runge-Kutta methods of comparable accuracy.
The general linear k-step method (LMM) can be written in the form

k k
Uy = Zajun_j + AtzbjF(un—j) (39)
Jj=1 J=0

for n > k, where the parameters a;, b; define the method, e.g. Butcher (1987),
Hairer, Norsett & Wanner (1993). If by = 0, the method is called ezplicit. The
starting values for this multistep recursion, ug, u1,...,ux—1 € V, are supposed
to be given, or computed by a Runge-Kutta method. Examples of these methods
are the two-step Adams-Bashforth method (32) and the two-step BDF method
(34).

If all aj,b; > 0, then from the basic assumption (2) it can be shown that

< m i 40
unl < oggafk”uj” (40)
for n > k, under the stepsize restriction

s
<ec- — in -2

At < c¢- T, c 1I§nj1£]C by’ (41)

with the convention a/0 = +oo if a > 0; see e.g. Spijker (2007), Gottlieb,

Ketcheson & Shu (2009). Property (40) can be viewed as an extension of (3)
for multistep methods with arbitrary starting values.
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Results of this type for nonlinear problems were derived in Shu (1988) (with
by = 0), originally in the total variation seminorm. Related results for linear
systems were given in Bolley & Crouzeix (1978) for positivity, and in Lenferink
(1989), Spijker (1983) for contractivity: where one considers ||@, — wu,|| with
differences of two numerical solutions instead of ||u,|| as in (40). More recently,
with arbitrary seminorms or more general convez functionals, i.e.

(1A + (1 = Aw|| < Affo]] + (1 = A)fw]]

for 0 < A <1 and v, w € V, the term SSP (strong stability preserving) —
introduced in Gottlieb, Shu & Tadmor (2001)— has become popular. Related
work for nonlinear problems was done in Lenferink (1991), Sand (1986), and
Vanselov (1983) for contractivity.

Using the order conditions, it was shown by Lenferink (1989) that the max-
imal size of the threshold factor ¢ for an explicit k-step method of order p is
bounded by

<1 if p=1,
k—p (42)

cgm if p>2.

The upper bound ¢ = 1 for p = 1 is attained by the forward Euler method.
Optimal higher-order multistep methods have been constructed by Shu (1988),
Lenferink (1989) and Gottlieb, Shu & Tadmor (2001).

In order to conclude (40) from the basic assumption (2) for arbitrary (semi-
)Jnorms or sublinear functionals, the condition that all a;,b; > 0 and At < c7y is
necessary. In fact, this condition is already needed if we only consider maximum
norms instead of arbitrary (semi-)norms; see Spijker (2007).

Consider again Adams-Bashforth method (32), BDF method (34) and EBDF
method (35). As it was shown in Section 0.4, there are At such that the methods
give accurate approximations to the true solutions. But these methods have
some negative coefficients and, therefore, are not covered by the above theory.

So, the methods with nonnegative coefficients form only a small class, ex-
cluding the well-known methods of the Adams or BDF-type, and the stepsize
requirement At < ¢7y (within this class) can be very restrictive. It is therefore
of interest to study the following weaker boundedness property

< - )
unll < p Orgfgkllujll (43)

for n > k, under the stepsize restriction At < 7, where the stepsize coeflicient
v > 0 and the factor u > 1 are determined by the multistep method.

Sufficient conditions were derived in Hundsdorfer & Ruuth (2006) and Hunds-
dorfer, Ruuth & Spiteri (2003) for (43) to be valid with arbitrary seminorms
under the basic assumption (2) and At < ~y7p.
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0.5.3 General linear methods

We recall that LMMs and RKMs are examples of methods belonging to the
important and very large class of general linear methods (GLMs), introduced
by Butcher (1966), and studied extensively in the literature —see e.g. Butcher
(1987, 2003), Hairer, Norsett & Wanner (1993), Hairer & Wanner (1996), and
the references therein.

The general linear method, for solving (1), depends on parameters ¢; (1 <

j < q) and parameter matrices A = (a;;) € R, B = (83;;) € R, where
1 <1 < q. The method can be written in the following form:
1 q
n—1 .
yi =Y agul At B F(y) (1<i<), (44a)
j=1 j=1
ul =y (1<i<), (44b)
Here ugn_l] are input vectors available at the n-th step of the method, whereas

y; are (intermediate) approximations used for computing the uE"] at the new

time level (n =1, 2, 3, ...); cf. e.g. Butcher (1966), Butcher (1987, pp. 338).

Obviously, the Runge-Kutta method (36) can be written in the form (44),
with Il =1, ¢ = s+ 1, u[ln} = u, ~ u(n-At) and a1 = 1, fi; = ay; (for
1§j§8), 6”20(f01‘]=$—|—1)

The linear multistep method (39) can be written in the form (44), with [ = k,
q=k+1and ugn] =Up_14; (1<i<k, n>0), y; = up—2+; (1<i<k+1, n>1),
and with A = (!), B = (?), where I denotes the k x k identity matrix, O
the k x (k + 1) zero matrix and a = (ag,...,a1), b= (bg,...,bo)-

For method (44) monotonicity is studied in the form

[n—1] ,
|l < X < <
il < a0 (1 <d <), (45)

under the stepsize restriction At < y79. Then the goal is to derive stepsize-
coefficients v with the following important property:

Condition 0 < At < v - 79 implies monotonicity, whenever V is
a vector space, || - || a convex function on V, and the function (46)
F :V — V satisfy the basic assumption (2);

see e.g. Spijker (2007) and the references therein.

For arbitrary GLMs the maximal stepsize-coefficient v for monotonicity was
determined in Spijker (2007). It was shown there that the maximal stepsize-
coefficients v for monotonicity is also relevant to a discrete maximal principle
and numerical contractivity of GLMs.
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0.6 Scope of the thesis

Chapter I: Stepsize Conditions for Boundedness in Numer-
ical Initial Value Problems

As an important example to motivate the study, we consider the total variation
seminorm || - ||7yv. Numerical processes, satisfying ||u,||7v < ||[un—1]|7v, play
a special role in the solution of hyperbolic conservation laws, cf. e.g. Harten
(1983), Shu (1988), Shu & Osher (1988), LeVeque (2002), Hundsdorfer & Verwer
(2003). Clearly, the monotonicity property (37) or (40) with ||-|| = ||-||zv implies
a TVB property, in that there is a finite g such that

luallry < e mave ugllry (for all m > k). (a7)

As discussed in Section 0.3, satisfying (47) is of crucial importance for suitable
convergence properties when At — 0, and constitutes one of the underlying rea-
sons why attention has been paid in the literature to the monotonicity properties
(37) or (40), see e.g. LeVeque (2002).

Unfortunately, there are well known RKMs and LMMs, with a record of
practical success, for which there exist no positive stepsize coefficients v such
that the monotonicity property (37) or (40), respectively, holds whenever At <
~v19. This was discussed already for LMMs in Section 0.5.2. Therefore one
cannot conclude in the way described above that the methods are total-variation
bounded. It is therefore worthwhile to study for GLMs directly boundedness
properties similar to (43).

Moreover, some special LMMs were found with a positive stepsize coefficient
~ such that the boundedness property (43) holds under the basic assumption
(2) and At < 479, although the monotonicity property (40) is violated, see
Hundsdorfer & Ruuth (2003, 2006), Ruuth & Hundsdorfer (2005). It would be
of much interest to know whether similar results are possible for other LMMs,
as well as for RKMs and more general GLMs.

In Chapter I we answer these questions. We present a generic framework
for deriving best possible stepsize conditions which guarantee boundedness of
actual RKMs, LMMs and GLMs. Besides being helpful in finding stepsize
conditions that are sufficient for boundedness, the framework leads to necessary
conditions as well. The contents of this chapter are equal to W. Hundsdorfer,
A. Mozartova, M.N. Spijker: Stepsize conditions for boundedness in numerical
initial value problems, STAM J. Numer. Anal. 47 (2009), 3797-3819.

Chapter II: Special boundedness properties in numerical
initial value problems

The fact that for many useful GLMs there exists no v > 0 such that (45) is
present, has led us to study in Chapter I general bounds similar to (43), which
are formally weaker than (45) but still useful because they can reveal essential
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boundedness properties of the numerical methods, like TVB. These general
bounds are relevant in cases where the monotonicity property (46) is violated.
But they suffer still from the following two inconveniences: (1) the corresponding
stepsize conditions, of type 0 < At <« -7y, involve complicated conditions on y
which are often difficult to check in practice; (2) the general bounds are relevant
to seminorms but not to the wider class of convex functionals.

The question arises of whether some special bounds can be found which
improve one or both of these two inconveniences, and which are present in cases
where (46) is violated.

Chapter II is essentially addressed to this question. We find special bounds
which can still be present in cases where the monotonicity property (45) is
violated, and which are the best possible in a definite sense. Moreover, these
special bounds are relevant to a class of functionals || - || that is wider than the
class of seminorms. Finally, and most importantly in view of applications, the
corresponding stepsize conditions 0 < At < - 7p involve a condition on v which
is easier to check in practice than the conditions relevant to the general bounds.
The contents of this chapter are equal to W. Hundsdorfer, A. Mozartova, M.N.
Spijker: Special boundedness properties in numerical initial value problems,
BIT 51 (2011), 909-936.

Chapter III: Stepsize Restrictions for Boundedness and
Monotonicity of Multistep Methods

As mentioned in Section 0.5.2, the linear multistep methods with nonnegative
coefficients form only a small class, excluding many well-known methods. For
instance, most explicit k-step methods of order p used in practice have p = k,
and for such methods we cannot have ¢ > 0; c.f. (41), (42). Furthermore,
the sufficient conditions which were derived in Hundsdorfer & Ruuth (2006)
and Hundsdorfer, Ruuth & Spiteri (2003) for boundedness (43) are not very
transparent and not easy to verify for given methods.

The generic framework presented in Chapter I, for deriving best possible
stepsize conditions which guarantee boundedness of GLMs, can be used to ob-
tain conditions for boundedness (43) of linear multistep methods. These condi-
tions are not only sufficient but also necessary. Moreover, these conditions are
more simple than the sufficient coonditions in Hundsdorfer & Ruuth (2006) and
Hundsdorfer, Ruuth & Spiteri (2003).

In practice, the starting values are not arbitrary, of course. From a given uy,
the vectors ui,...,ur—1 can be computed by a Runge-Kutta method. For such
combinations of linear multistep methods and Runge-Kutta starting procedures
the monotonicity property can be studied in the form (3) under the stepsize
restriction At < y7g.

Consider the AB2 method (32) and BDF2 method (34). These methods have
negative coefficients, therefore we cannot conclude (40) (for arbitrary (semi-
Jnorm or sublinear functional) for these methods. But as seen from the illus-
trations in Section 0.4, the numerical solutions of these methods can have nice
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monotone behaviour with suitable starting procedures, see Figure 2 and 6.

The natural question arises for combinations of linear multistep methods
and Runge-Kutta starting procedures of whether stepsize restrictions At < y7y
can be established which guarantee the monotonicity property (3). Some partial
results in this direction were obtained in Hundsdorfer, Ruuth & Spiteri (2003)
for some explicit two-step methods. One may wonder whether these results can
be generalized for arbitrary LMMs.

In Chapter III we address these questions. Using the framework of Chapter I,
we obtain necessary and sufficient conditions for boundedness. These conditions
are relatively transparent and easy to verify numerically for given classes of
methods. We will also give conditions that ensure monotonicity —as in (3) — for
combinations of linear multistep methods and Runge-Kutta starting procedures.
The contents of this chapter are equal to W. Hundsdorfer, A. Mozartova, M.N.
Spijker: Stepsize restrictions for boundedness and monotonicity of multistep
methods, J. Sci. Comput. 50 (2012), 265-286.

Chapter I'V: Comparison of Boundedness and Monotonicity
Properties of One-Leg and Linear Multistep Methods

Instead of linear multistep methods, boundedness can be considered for the
related class of one-leg methods. With given coeflicients a;, 1 < j < k, and
bj, 0 < j <k, as for a linear multistep method (39), the corresponding k-step
one-leg method can be written in the form

2 k
Uy = Z ajUn—j + AtBF (vy,), - Z l;jun_j (48)
j=0

j=1

for n > k, with a natural scaling for one-leg methods: ZA)j = b;/f and § =
Z;ﬂ:o bj, B # 0. The starting values ug,u1,...,ur—1 € V are supposed to be
given, or computed by a Runge-Kutta method. These methods were originally
introduced in Dahlquist (1976) to facilitate the analysis of linear multistep meth-
ods. Stability results with inner-product norms for one-leg methods often have a
somewhat nicer form than for linear multistep methods; see e.g. Butcher (2003),
Hairer & Wanner (1996). A question is whether the one-leg analysis can give
results in a nicer form than for the linear multistep methods.

In Chapter IV we study boundedness for one-leg methods, in the sense of
(43). Using results for linear multistep methods of Chapter III, it will be shown
that the maximal stepsize coefficient for boundedness of a one-leg method is
the same as for the associated linear multistep method. Simplification of the
analysis is not achieved with one-leg methods.

In view of the close connection between one-leg and linear multistep meth-
ods, it is not very surprising that the stepsize coefficients for boundedness are
the same. However, it will be also shown that combinations of one-leg methods
and Runge-Kutta starting procedures may give different, and possibly larger,
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stepsize coefficients for monotonicity than with the linear multistep methods
and the same starting procedures. These results will be worked out in detail for
the class of explicit two-step methods.

For a more detailed introduction to the topics of this thesis, and for related
literature, we refer to the beginning of each chapter.



Chapter 1

Stepsize Conditions for
Boundedness in Numerical Initial
Value Problems

For Runge-Kutta methods, linear multistep methods and classes of general lin-
ear methods much attention has been paid, in the literature, to special nonlin-
ear stability requirements indicated by the terms total variation diminishing,
strong stability preserving and monotonicity. Stepsize conditions, guaranteeing
these properties, were derived by Shu & Osher (1988) and in numerous subse-
quent papers. These special stability requirements imply essential boundedness
properties for the numerical methods, among which the property of being total
variation bounded. Unfortunately, for many well-known methods, the above
special requirements are violated, so that one cannot conclude in this way that
the methods are (total variation)bounded.

In this chapter, we focus on stepsize conditions for boundedness directly,
rather than via the detour of the above special stability properties. We present a
generic framework for deriving best possible stepsize conditions which guarantee
boundedness of actual RKMs, LMMs and GLMs, thereby generalizing results
on the special stability properties mentioned above.

1.1 Introduction

1.1.1 Monotonicity and boundedness
Consider an initial value problem, for a system of ordinary differential equations,
of type

d

%u(t) = F(t,u(t)) (t>0), u(0)=uop. (1.1)

In this chapter we study step-by-step-methods for computing numerical approx-
imations u, to the true solution values u(nAt), where At denotes a positive
stepsize and n = 1,2, 3, ....
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Monotonicity of Runge-Kutta methods

The general Runge-Kutta method (RKM), for computing u,,, can be written in
the form

of!

Up—1 + AtZaijF((n -1+ cj)At,vJ[»"]) (1<i<s+1), (1.2a)
j=1
o = ol (1.2b)

Here a;; and ¢; are parameters defining the method, whereas vl[”] (1<i<ys)
are intermediate approximations used for computing wu,, = vgﬁl from u,—1 (n =
1,2,3,...), cf. e.g. Butcher (1987) or Hairer, Norsett & Wanner (1987). If
a;; =0 (for j > i), the method is called exzplicit.

In the following, V stands for the vector space on which the differential
equation is defined, and || - || denotes a seminorm on V (i.e.: |Ju+v|| < ||ull +]v]|
and [[Av|| = |A||Jv]| for all u,v € V and real A). Much attention has been paid
in the literature to the property

ol < fluna |l (for 1< <s+1). (1.3)
Clearly, (1.3) implies |Juy|| < ||un—1]|. The last inequality, as well as property
(1.3), is often referred to by the term monotonicity or strong stability; it is of
particular importance in situations where (1.1) results from (method of lines)
semidiscretizations of time-dependent partial differential equations. Choices for
|I-]| which occur in that context, include e.g. the supremum norm ||z|| = ||z||c =
sup; |&| and the total variation seminorm ||z| = ||z||7v = Y, [&i+1 — & (for
vectors « with components &;).

Numerical processes, satistying ||u,|l7v < ||un—1]l7v, play a special role
in the solution of hyperbolic conservation laws and are called total variation
diminishing (TVD), cf. e.g. Harten (1983), Shu (1988), Shu & Osher (1988),
LeVeque (2002), Hundsdorfer & Verwer (2003). For such processes there is,
trivially, total variation boundedness (TVB), in that there is a finite value u
such that, for all n > 1,

unllrv < p-fluollrv. (1.4)

Satisfying (1.4) is of crucial importance for suitable convergence properties when
At — 0, and constitutes one of the underlying reasons why attention has been
paid in the literature to (1.3), see e.g. LeVeque (2002).

Conditions on At which guarantee (1.3) were given in the literature, mainly
for autonomous differential equations (i.e. F' is independent of ¢). These condi-
tions apply, however, equally well to general F' and we discuss them below for
that case. In many papers, one starts from an assumption about F' which, for
given 79 > 0, essentially amounts to

v+ 710 F(t,0)| < |[o]| (for t €R, v € V). (1.5)
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Assumption (1.5) means that the forward Euler method is monotonic with step-
size 1p. It can be interpreted as a condition on the manner in which the semidis-
cretization is performed, in case “u(t) = F(t,u(t)) stands for a semidiscrete
version of a partial differential equation.

For classes of RKMs, positive stepsize-coefficients v were determined, such
that monotonicity, in the sense of (1.3), is present for all At with

0<At<~-7, (1.6)

see e.g. Shu & Osher (1988), Gottlieb, Shu & Tadmor (2001), Spiteri & Ruuth
(2002), Ferracina & Spijker (2004, 2005), Higueras (2004, 2005), Ruuth (2006),
Spijker (2007, Section 3.2.1).

Monotonicity of linear multistep methods

The linear multistep method (LMM), for computing u,,, can be written in the

form
k k

Up = Z aj Un—j + At- Z bj F((n—j)At, up—j), (1.7)
j=1 Jj=0

where the parameters a;, b; define the method, >~ a; = 1 - cf. e.g. Butcher
(1987), Hairer, Ngrsett & Wanner (1993). If by = 0, the method is called
explicit.

For method (1.7), a study was made of monotonicity, in the sense of the
inequality

Junll < i 1. (1.8

For classes of LMMs, positive stepsize-coefficients v were determined, with the
property that (1.5), (1.6) guarantee (1.8), see e.g. Shu (1988), Gottlieb, Shu
& Tadmor (2001), Hundsdorfer & Ruuth (2003), Spijker (2007, Section 3.2.2).
Clearly, (1.8) with || - || = || - ||rv implies again (trivially) a TVB-property, in
that there is a finite p such that, for all n > k,

< Ny .
lunllry: < | max Jlujfry (1.9)

Boundedness

Unfortunately, there are well known RKMs and LMMs, with a record of prac-
tical success, for which there exist no positive stepsize-coefficients v such that
(1.5), (1.6) always imply (1.3) or (1.8), respectively. Examples are the Adams
methods and BDFs with k£ > 2 as well as the Dormand-Prince formula, cf. e.g.
Hairer, Ngrsett & Wanner (1993). Moreover, no second order (implicit) RKMs
or LMMs exist with v = oo, see e.g. Spijker (1983, Sections 2.2, 3.2). These
circumstances suggest that there are situations where monotonicity may be
too strong a theoretical demand, and that it is worthwhile to study, along
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with monotonicity, also directly the following weaker boundedness properties
for methods (1.2) and (1.7), respectively:

o™ < p-fluoll  (for 1<i<s+1andalln>1), (1.10)
< u- : > k). .
lunll < g~ amax Jlugll - (for all n > k) (1.11)

Here p stands for a finite constant (independent of n) which is allowed to be
greater than 1. The requirements (1.10), (1.11), with || - || = || - ||zv, still imply
the TVB-property —which highlights the importance of studying (1.10), (1.11).

Recently —see Hundsdorfer & Ruuth (2003, 2006), Ruuth & Hundsdorfer
(2005) — some special LMMs were found with a positive stepsize-coefficient -y
such that (1.11) holds under conditions (1.5), (1.6), although (1.8) is violated.
The question of whether similar results are possible for other LMMSs, as well as
for step-by-step methods of a different kind, seems not to have been considered
in the literature thus far.

1.1.2 Scope of the chapter

Boundedness of general linear methods

We recall that LMMs and RKMs are examples of methods belonging to the
important and very large class of general linear methods (GLMs), introduced
by Butcher (1966), and studied extensively in the literature —see e.g. Butcher
(1987, 2003), Hairer, Norsett & Wanner (1993), Hairer & Wanner (1996), and
the references therein.

In this chapter, we shall consider, for GLMs, boundedness properties, similar
to (1.10), (1.11). A generic framework will be presented which facilitates the
computation of stepsize-coefficients v related to such properties.

The theory in the present chapter of the thesis can be viewed as a (nontrivial)
extension of an approach to monotonicity of GLMs given earlier in the literature,
cf. Spijker (2007). Its usefulness will be illustrated briefly in the present chapter
of the thesis, whereas in Chapters 3 and 4 the theory will be applied in a more
general analysis for classes of GLMs.

Organization of the chapter

Section 1.2 deals with stepsize-coefficients v related to explicit bounds for the
output vectors of a generic numerical process. Our main theorems, Theo-
rems 1.2.2 and 1.2.4, provide an algebraic criterion in terms of v, viz. (1.23),
for these bounds to be valid in situations of practical relevance.

In Section 1.3, we give results related to Theorems 1.2.2 and 1.2.4. In Sec-
tion 1.3.1, we apply the theorems so as to obtain simplified conditions for bound-
ing the generic process. We also recover easily a concise criterion for monotonic-
ity obtained earlier in the literature (but derived differently), cf. Spijker (2007).
In Section 1.3.2, a lemma is presented which is helpful when applying the main



1.2. Bounds for a generic numerical process 29

theorems in the boundedness analysis of actual GLMs. In Section 1.3.3, we il-
lustrate the significance of the general theory shortly, by applying it in resolving
the question of boundedness for some concrete numerical methods.

In Section 1.4 we give the proofs of Theorems 1.2.2, 1.2.4.

1.2 Bounds for a generic numerical process

In this section, we shall study bounds for the output vectors of a generic numeri-
cal process. We are interested in these bounds, primarily because they facilitate
significantly the derivation of actual boundedness results for given GLMs. In
Section 1.2.1 we first describe GLMs, whereas in Section 1.2.2 we introduce the
generic numerical process and relate it to GLMs. In the Sections 1.2.3 and 1.2.4
we present criteria for the existence of the above mentioned bounds for the
generic process.

In all of the following, V denotes again the vector space on which the differ-

ential equation is defined, and || - || stands for an arbitrary given seminorm on
V.

1.2.1 General linear methods

The general linear method, for solving (1.1), depends on parameters ¢; (1 <
j < ¢) and parameter matrices A = (a;;) € R, B = (83;;) € R?*%, where
1 <1 < q. The method can be written in the following form:

q

l
PN aiul ™+ Aty gy F((n—1+c)at,ol)  (1<i<q), (1.12a)
Jj=1

I

q

L -

’L

L a<i<. (1.12Db)

Here ugnfll

vl[”] are (intermediate) approximations used for computing the input vectors

ugn] for the next step (n =1, 2, 3, ...); cf. e.g. Butcher (1966), Butcher (1987,
pp- 338).

Obviously, the Runge-Kutta method (1.2) is an example of (1.12), with [ = 1,
q=s+1, u[ "] =u, ~u(n-At)and a1 =1, G =a;; (for1 <j<s), B;; =0
(for j =s+1).

The linear multistep method (1.7) is another example of (1.12), with [ = &,

= k+ 1 and ugn] = Up_14i (1 <4 < Kk, n > 0), o — Up—oti (1 <

i < k41, n > 1). Method (1.7) can be written in the form (1.12) with
c;=j-1, A= ("), B = (%), where I denotes the k x k identity matrix, O
the k x (k + 1) zero matrix and a = (ak,...,a1), b= (bg,...,bp)-

For completeness, we note that GLMs are often represented differently from

(1.12), viz. in a partitioned form with parameters w;j, vij, aij, bij, ¢;, as follows:

are input vectors available at the n-th step of the method, whereas
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l s
Vi =Y wiyl U+ ALY aF((n—1+¢)at,Y;)  (1<i<s), (1.13a)
j=1 j=1

l s
g =3y 4 A b F((n—1+¢)at,Y;)  (1<i<l),  (1.13b)

j=1 j=1

see e.g. Hairer & Wanner (1991, p.313), Butcher (2003, p.358). Here s is the
number of internal approximations Y;, and [ is again the number of vectors

yl["] which propagate from step to step. Clearly, (1.13) is formally of type

(1.12) with ¢ = 1 + s and ugn], ™ defined, with obvious vector notations, by

ull =yl gl = (yﬁ]) In this chapter, we aim at bounding simultaneously
Y and y!, in terms of y[%, so that we find it convenient to use a representation
of the GLM in which Y and 4™ are lumped together. In the following, we shall
thus deal with representation (1.12) rather than (1.13).

Definition 1.2.1. (Boundedness of general linear methods). We define method
(1.12) to be bounded, with constant p (for given stepsize At, vector space V,

seminorm ||.|| and function F), if for all N > 1 we have
oM < g max [[ul”] (for1<n < N and1<i<q), (1.14)
1<t

whenever ugn_l], ugn], Ul["] €V satisfy (1.12) (for 1 <n < N).
Note that (1.14) implies (1.10) or (1.11), respectively, if method (1.12) stands
for a RKM or LMM in the way indicated above.

1.2.2 A generic numerical process, with a simple form

For studying boundedness of (1.12), it is convenient to represent in a concise

form all relations, involved in specifying ’UZ[N] (for any given N > 1). We describe

now a standard representation of N consecutive steps of the GLM, to which we

W[il]l refer in the following as the canonical representation. We combine all vectors
n

v; ' (with 1 <4 < gand 1 <n < N) into one single vector y = [y;] € V™,

(2
where m = N-q, and y; € V (1 < i < m). Furthermore, we introduce shorthand

notations for uEO] and F((n—14c¢;)At, v). Defining, for 1 <i<land1<j <g,

0 n
2=, Y g =05 Fangsi(©) = F((n—1+¢)Atv),  (1.15)

we can rewrite the relations (1.12) (for n = 1,... N) in the following form:

! m
yi= sy ay + A Yty Filyy) (L<i<m). (1.16)
Jj=1 j=1
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To specify the coefficient matrices S = (s;;) € R™*L T = (t;;) € R™*™ we
denote the matrices consisting of the last | rows of A = () and B = (f;5) by
Ap and By, respectively. It can be seen that S is made up of ¢ x [ blocks S, ,
and T of ¢ x g blocks T, ; (1 <n <N, 1<j<N), where

S, = A(Ag)" (1.17a)
T,; =0 (j>n), Tyn=B, Tn;=A(A)"7"'By (n>j). (1.17b)

Furthermore, when F': R x V — V satisfies (1.5), then definition (1.15) implies
[|lv+ 710 Fi(v)]] < |lv|] (for 1 < i< m, and v € V). (1.18)

For analysing boundedness of (1.12), it is sometimes also handy to use non-
canonical representations, of N steps of the method, cf. e.g. Section 1.3.3. Such
representations share with the canonical representation the form (1.16), with
property (1.18), but violate (1.17). Therefore, unless specified otherwise, in the
following discussion of (1.16) we shall not assume S, T' to satisfy (1.17), so that
the conclusions, to be obtained about (1.16), can be applied both to canonical
and non-canonical representations of method (1.12).

We shall interpret z; € V and y; € V as input and output vectors, respec-
tively, of the generic process (1.16). In the situation (1.16), (1.18), we shall
focus on the bound

il < . i << . .
lll < p- sl (for 1< i <m) (1.19)

We shall say that process (1.16) satisfies the bound (1.19) (for given stepsize
At, vector space V, seminorm ||.| and functions F; : V. — V), if (1.19) holds
whenever x; and y; € V satisty (1.16).

Clearly when (1.16) stands, as above, for N versions of (1.12) via the re-
lations (1.15), (1.17), then boundedness of the GLM, defined in Section 1.2.1,
corresponds to the situation where process (1.16) satisfies the bound (1.19) -
with constant p independent of N =1,2,3,....

In Sections 1.2.3, 1.2.4, we shall present, without proof, the basic results
of the chapter, Theorems 1.2.2, 1.2.4. The theorems give conditions, on the
ratio At/7p, in order that process (1.16), with arbitrary parameter matrices
S = (sij), T = (tij), satisfies the bound (1.19).

1.2.3 Satisfying the bound (1.19) for arbitrary
functions F;

In this subsection, we shall give our first main result, Theorem 1.2.2. The
theorem deals with v and g such that the following general and fundamental
property is present:

Condition 0 < At < v - 79 implies that process (1.16) satisfies
the bound (1.19), whenever V is a vector space with seminorm (1.20)
Il - ||, and arbitrary functions F;:V — V satisfy (1.18).
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Theorem 1.2.2 concerns not only the above property (1.20), but also the fol-
lowing weaker property (1.21), in which the focus is on the mazimum norm,
defined by ||z]|c = max; |&;| (for vectors x € R™ with components &;).

Condition At = v - 7y implies that process (1.16) satisfies the
bound (1.19), when V.= R™, || - || = || - ||, and arbitrary (1.21)
F; : R™ — R™ satisfy (1.18).

The theorem below will show that the general property (1.20) is already
present as soon as (1.21) is in force. Moreover, the theorem will give an algebraic
criterion, in terms of v, u, for (1.20), (1.21) to be valid.

In formulating the criterion we need some further notations. For any m x k
matrix A = (a;;), we put ||Al|sc = max,o ”ﬁﬁ“}:’ and we recall the well known
formula

[ Alloc = ml,aXZ |ai;].
i

We define |A| = (|a;j|), and denote the spectral radius of square matrices A by
spr(A).
For values v such that I + 7T is invertible, we introduce the matrices

Q=(qij) =T +~7TD)"", P=(pi)=Q(T), R=(ry;) =QS.  (1.22)

Our criterion —for properties (1.20), (1.21)— involves the following require-
ments:

I+ ~T is invertible, (1.23a)
spr(|P[) < 1, (1.23b)
=[P Rl < m (1.23¢)

Theorem 1.2.2. (Criterion for the bound (1.19), when arbitrary F; satisfy
(1.18)). Consider process (1.16), with arbitrary coefficient matrices S = (s;5)
and T = (t;;), and let positive 7o, v, p be given. Then condition (1.23) is
necessary and sufficient for property (1.20), as well as for (1.21).

Since property (1.20) is a-priori stronger than (1.21), the essence of the above
theorem is that the algebraic condition (1.23) implies the (strong) statement
(1.20), whereas already the (weaker) statement (1.21) implies (1.23).

Clearly, when ~ satisfies (1.23a), (1.23b), the theorem shows that the small-
est u, for which statements (1.20), (1.21) hold, is equal to

p= 1= PRl (1.24)

In many practical situations, condition (1.23c) is the essential requirement
rather than conditions (1.23a) or (1.23b). One easily sees that the last two con-
ditions will be satisfied, with any v > 0, if T" is lower triangular with nonnegative



1.2. Bounds for a generic numerical process 33

diagonal entries. This applies notably to the situation where 7' is strictly lower
triangular, which corresponds to a numerical process that is explicit.

Finally, we note that when, for a given GLM, boundedness (in the sense
of Definition 1.2.1) is analysed via the canonical representation, one arrives
by Theorem 1.2.2 at requirement (2.12c) uniformly for m = Ngq, with N =
1,2,3,... This is in general not easy to verify. More simple conditions and
applications will be presented in Section 1.3. When the matrices P, R only
depend on N, v and the coefficients of the underlying GLM (as is the case in
the canonical representation), the stepsize-coefficient v for boundedness only
depends on the method, and not on the class of problems under consideration,
characterized by 79 in (1.5) or (1.18).

1.2.4 Satisfying the bound (1.19) for restricted
functions F;

Our second main result, Theorem 1.2.4 below, deals with important situations
not adequately covered by Theorem 1.2.2. It is often mot natural to allow —as
in Theorem 1.2.2 — that all functions F; are different from each other.

For instance, if in (1.12) we have ¢; = ¢; for some ¢ # j, or if the differential
equation is autonomous, then N successive applications of (1.12) are represented
canonically —via (1.15), (1.17) — by a process 1.16 with F; = F} for some, or all,
indices i # j.

Also when ¢; # ¢; (for all ¢ # j), and the differential equation is non-
autonomous, it can happen that the canonical representation, obtained via
(1.15), (1.17), amounts to a process (1.16) with F; = F}; for some indices i # j.
According to (1.15), this situation occurs as soon as n1 + ¢; = ng + c; for some
ni, na, 4, j with nq1 ¢+ 14 # na g+ j. When a general LMM, cf. (1.7), is repre-
sented as a GLM as indicated in Section 1.2.1, then N > 2 applications of the
GLM provide an example of this situation.

Below we shall see that, in cases where some of the functions F; are equal
to each other, condition (1.23) can be an unnecessarily strong requirement on
v in order that the stepsize restriction 0 < At < -7y implies the bound (1.19).

In order to describe general situations where some of the functions F; are
equal to each other, we consider index sets J, with J, C {1,...,m} (for 1 <
p <), and functions F; : V — V (for 1 <4 < m), such that

Ji,...,Jr are nonempty and mutually disjoint, with Uj_;J, = (1.25)
{1,...,m}, '
F; = F; whenever 7 and j belong to the same index set J,,. (1.26)

Below, we shall deal with the following variant of property (1.20), in which the
functions F; are restricted according to (1.26):

Condition 0 < At < v - 79 implies that process (1.16) satisfies
the bound (1.19), whenever V is a vector space with seminorm (1.27)
Il - |I, and functions F; : V — V satisfy (1.18), (1.26).
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We will see that finding a criterion for (1.27) is more subtle an issue than for
(1.20). It will turn out to be convenient to consider, in addition to the above
property (1.27), the following weaker version:

Condition At = v - 7y implies that process (1.16) satisfies the
bound (1.19), whenever V = R" with seminorm || - ||, and F; : (1.28)
R™ — R™ satisfy (1.18), (1.26).

Note that, because arbitrary seminorms occur in (1.28), this weaker version
is not related to the original property (1.27), in the same way as the weaker
version (1.21) is related to (1.20). An adaptation of (1.21), for the situation at
hand, reads as follows:

Condition At = v - 7y implies that process (1.16) satisfies the
bound (1.19), when V=R" |- || = || - ||, and F; : R™ — R™ (1.29)
satisfy (1.18), (1.26).

By Theorem 1.2.2, condition (1.23) is still sufficient in order that (1.27),
(1.28), (1.29) hold. But, the following simple Example 1.2.3 shows that the
condition is no longer necessary —cf. also Section 1.3.3 for a more natural, but
less simple, counterexample.

Example 1.2.3. Consider process 1.16 withl =1, m =2and s;; =1, %1 = 3,
ti2 = —2. Suppose (1.25), (1.26) with r = 1, J; = {1,2}, i.e. F} = F, and
consider v > 1/4.

One easily sees that requirement (1.23a) is fulfilled, and spr(|P|) > 1.
Therefore, condition (1.23b) is violated.

On the other hand, the process at hand is nothing but the (backward Euler)
method yo = y1 = 21 + At F1(y1), which is of the form (1.16) with [ =m =1
and S = 1, T = 1. Condition (1.23) is fulfilled by S, T, with u = 1, for any
v > 0.

In line with Theorem 1.2.2 (applied with S, T), we can conclude that the
original process (with m = 2) must have property (1.27), with p = 1, for any
~ > 0, although (1.23) is violated for v > 1/4. <&

In the following, we will see that violation of condition (1.23) while (1.27) is
valid —as in the above example — is a phenomenon related to reducibility of the
generic process (1.16). We will deal below with two irreducibility assumptions
under which (1.23) cannot be violated.

In formulating these assumptions, we denote the i-th row and j-th column
of any matrix A by A(i,:) and A(:, j), respectively. By T = (fij) we denote the
matrix defined by

tij =t (if S(j,:) #0), tij =0 (if S(4,:) = 0).

By [ST] and [S T we denote the m x (I +m) matrices whose first { columns
equal those of S, and last m columns equal those of T and T, respectively.
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We will use the irreducibility assumption

[S TI(i,:) # [S T)(j,:) (if i # j are in the same J, and
T(:,1) #0, T(:,4) #0),

as well as the slightly stronger assumption

(1.30)

[S f](z,) £ [S f](j,:) (if ¢ # j are in the same J, and (1.31)
T(:,i) #0, T(:,j) #0). '

Clearly, if » < m and there is no irreducibility in the sense of (1.30), then
process (1.16) —with F; satisfying (1.26) — is equivalent to a process (1.16) with
a smaller value of m.

Theorem 1.2.4. (Criterion for the bound (1.19), when F; satisfy (1.18), (1.26)).

Consider process (1.16), with arbitrary coefficient matrices S = (s;;) and T =

(tij). Let positive 1o, v, p be given, and assume (1.25).

(i) Assume irreducibility in the sense of (1.30). Then condition (1.23) is nec-
essary and sufficient for property (1.27), as well as for (1.28).

(i1) Assume irreducibility in the sense of (1.31). Then condition (1.23) is nec-
essary and sufficient for property (1.27), as well as for (1.29).

The above statement (i) shows that, under the irreducibility assumption
(1.30), property (1.28) implies the algebraic property (1.23). On the other
hand, statement (ii) reveals that under the stronger irreducibility assumption
(1.31), already the weaker property (1.29) implies (1.23). The natural question
thus arises of whether statements (i), (ii) can be combined and strengthened
into the following proposition:

(iti) Assume irreducibility in the sense of (1.30). Then condition (1.23) is nec-
essary and sufficient for property (1.27), as well as for (1.29).
The following counterexample answers the above question in the negative:
statement (iii) is in general not true!

Example 1.2.5. Consider process 1.16 with [ = 1, m = 3 and s;; = 0,
S91 = 831 = 1, tj1 = 4, t120 = t13 = 0, lap = 32 = 3, to3 = t33 = —2.
Suppose (1.25), (1.26) with » = 1, J; = {1,2,3}, i.e. F; = F, = F3, and
consider v = 1/4.

The irreducibility assumption (1.30) is fulfilled. Furthermore, one easily sees
that (1.23a) is fulfilled, but spr(|P|) = 1. Therefore, condition (1.23) is violated.

On the other hand, for At = 79/4 and V, ||-||, F; as in (1.29), it can be seen
that [[y1| = |ALF(y1)|| = 0, [lg2ll = [[ysll < [lz1]]. With p =1, we thus have
property (1.29). <&

Theorem 1.2.2 can formally be viewed as a special case of Theorem 1.2.4
—the latter theorem, with r = m and the trivial index sets J, = {p}, implies the
former. We have formulated Theorem 1.2.2 separately in view of its importance
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and simplicity: it does not need (1.25), (1.26) nor (1.30), (1.31). Moreover, by
formulating first Theorem 1.2.2 explicitly, we could show in a natural way, via
Example 1.2.3, that some additional (irreducibility) assumption is needed in
order that condition (1.23) is the appropriate criterion when some F; are equal.

1.3 Results related to the main theorems

1.3.1 Alternative conditions for properties (1.20), (1.27)

In this section we study process (1.16) with arbitrary coefficient matrices S =
(sij) and T' = (t;;). We shall give conditions, for properties (1.20) and (1.27),
which are in general simpler and easier to check than (1.23). In deriving these
conditions, we shall use a lemma about condition (1.33b) which will be presented
first in Section 1.3.1.

The same notations will be used as in Section 1.2, notably (1.22), and any
inequalities between matrices or vectors should be understood entry-wise or
component-wise, respectively.

Background regarding condition (1.23b)
The following lemma, about condition (1.23b), will be used in Sections 1.3, 1.4.

Lemma 1.3.1. (Interpretations of (1.23b). Assume (1.23a). Then each of the
following three requirements is equivalent to (1.23b).

(i) I —|P| is invertible, with (I — |P|)~* > 0;

(i) I —|P| is invertible, and spr(|P]) < 1;

(iii) There exist no real scalar A and vector ¢ € R™ with:

A —|P])e=0, o#0, ¢ >0, A>1. (1.32)

Proof. One easily sees that (1.23b) implies each of the properties (i), (ii), (iii).
Conversely, applying the Perron-Frobenius theory as presented e.g. in Horn &
Johnson (1988, p. 503), it follows that (1.23b) is implied by (ii) as well as by
(iif).

We shall complete the proof of the lemma by assuming (i) and proving
(iii). Suppose, (iii) does not hold, i.e. there are \, ¢ satisfying (1.32). Then
0> —p= (- |P)H(A—=1)p} > 0, so that ¢ = 0, which contradicts
(1.32). O

Simplified conditions for properties (1.20), (1.27), with arbitrary pu

The following neat condition on v will turn out to be quite useful:

I +~T is invertible, (1.33a)
P >0, (1.33b)
R > 0. (1.33¢)
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Assume (1.33a) and (1.33b) are fulfilled. We then see from Lemma 1.3.1
and the formula
I-P=Q=T+~T)" (1.34)

(which follows from (1.22)), that condition (1.23b) is equivalent to: spr(P) <
1.
For matrices S, T satisfying (1.33), (1.23b), we have

I = 1PN Rlllo = (1 = P)™" Rlloo = Q7' Q Slloc = [|Sloc-

For such matrices we have also S = (I — P)"' R, with (I — P)~! > 0, so that
S >0and [|(I - |P])7R|||ec = max; 3 sij-

Consequently, under assumption (1.33), the conditions (1.23b), (1.23¢) are
equivalent to

spr(P) <1 and ZS“ <u (1<i<m). (1.35)
J

In view of this equivalency, we have the following useful corollary to Theo-
rems 1.2.2, 1.2.4:

Corollary 1.3.2. (Criterion for properties (1.20), (1.27), when P > 0, R > 0).
Let arbitrary matrices S = (s;5), T = (ti;) and positive values T, 7y, p be given,
such that (1.83) is fulfilled. Then the following two statements are valid.

(i) Condition (1.35) is necessary and sufficient for property (1.20).

(i1) Assume (1.25), (1.30). Then (1.35) is necessary and sufficient for property
(1.27).

The following corollary to Theorem 1.2.2 is useful in cases where (1.33a),
(1.33b) hold, but (1.33c) is violated. It can be applied when constants g;, o, T
are available such that the matrices R = (13;), T' = (ti;), P = (pi;) satisfy

spr(P) <1 and Z Irik] < 05, Z 0j <o, max; ;l|t;| < 7. (1.36)
k J

Corollary 1.3.3. (Condition for property (1.20), when P > 0). Let arbitrary
matrices S = (si;), T = (tij) and positive values Ty, v be given, such that
(1.33a), (1.33b) are fulfilled. Then condition (1.36) guarantees property (1.20)
with

po= maxjo; + y-max; ), [tijlo; < (14+77)o0

Proof. In view of Theorem 1.2.2; it is sufficient to prove (1.23b), (1.23c) for
the above p. Condition (1.23b) follows, from Lemma 1.3.1 and (1.34), as
above. Furthermore, condition (1.23c¢) is fulfilled, because ||(I —|P]) ! |R|||cc =
)T = P)~ Rl = (I +7T) |Rllloo < IIR]loo +7IIT |Rllloe < max; o +7 -
max; y_; [ti;] ;- O



Chapter 1. Stepsize Conditions for Boundedness in Numerical Initial Value
38 Problems

Simplified criterion for properties (1.20) and (1.27), with p =1

Throughout this subsection we assume that 1 = 1 and the matrix S = (s;;)
satisfies

Si1+ Sio+--+s8;=1 (1§Z§m) (1.37)

Assumption (1.37) is e.g. fulfilled when (1.16) stands for the canonical rep-
resentation of N steps of a method (1.12) with coeflicients «;; satisfying

i1t aiat-tap=1 (1<i<q) (1.38)

- this follows easily from (1.17a). GLMs are often represented with coefficients
a; such that (1.38) is in force, cf. e.g. the examples in Section 1.3.3.

We shall find that condition (1.33) is the appropriate criterion for properties
(1.20), (1.27), by proving the equivalence of (1.33) and (1.23) (with p = 1).
In our proof we shall use the notation Ej to denote the k x 1 matrix with all
entries equal to 1.

First, assume (1.33). In order to prove (1.23b), (1.23c) (with p = 1), we
note that PE,, = PSE, = (I —-Q)SE, =E,, — RE, < E,,. It follows that
IP|lco <1, so that spr(P) < 1. Hence, (1.35) is in force, which in Section 1.3.1
was proved to be equivalent to (1.23b), (1.23c).

Conversely, assume (1.23) (with 4 = 1). We have E,, = SE, = (I —
P)"'RE, < (I - |P|)"'|R|E, < E,,. Hence (I — |P|)"'|R| E, = E,n, which
implies |P| E,, + |R| E; = E,, = P E,, + R E;. Therefore, (|P|— P) E,, + (|R| —
R)E; =0, so that P=|P| >0, R=|R|>0,1ie. (1.33).

In view of the equivalency of (1.33) and (1.23), the Theorems 1.2.2, 1.2.4
yield the following corollary, which is closely related to a monotonicity result
formulated earlier in the literature (but derived differently), cf. Spijker (2007).

Corollary 1.3.4. (Criterion for properties (1.20), (1.27), with u = 1). Let
arbitrary matrices S = (s;5), T = (ti;) and positive 19, v be given. Assume
(1.37). Then the following two statements are valid.

(i) Condition (1.33) is necessary and sufficient for property (1.20) with p = 1.
(i1) Assume (1.25), (1.30). Then (1.88) is necessary and sufficient for (1.27)
with p=1.

1.3.2 The matrices T, P and R, for the canonical repre-
sentation of GLMs

By representing N steps of method (1.12) in the form (1.16) canonically —
cf. (1.15), (1.17) — and a subsequent application of one of the Theorems 1.2.2,
1.2.4 or Corollaries 1.3.2, 1.3.3, 1.3.4, one can obtain conditions for boundedness
of the GLM. Because such conditions involve the corresponding 7', P and R —
cf. (1.22) — we shall study these matrices, in the subsequent Lemma 1.3.5. The
lemma will be applied in Section 1.3.3.
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From (1.17), (1.22), we see that the matrices S, T, P, @), R, respectively,
corresponding to the canonical representation of N steps of (1.12) reduce, for
N =1, simply to:

A=(a;j), B=(Bi;), L={++vB)"', K=L({B), M=LA. (139)

The following lemma relates (conditions on) T, P, R for any N > 1, directly to
the simple matrices (1.39). We denote by K, My the matrices consisting of the
last [ rows of K and M, respectively. Note that M, equals the [ x [ stability
matrix M (z) of the GLM at the point z = —+, cf. e.g. Butcher (2003, p. 381).

Lemma 1.3.5. (On the matrices T, P, R of the canonical representation). For

giwen v > 0, > 0 and integer N > 1, the following statements are valid.

(i) Matriz T satisfies (1.23a) if and only if I + B is invertible.

(ii) If (1.23a) holds, then matriz P satisfies (1.23b) if and only if spr(|K|) < 1.

(iii) If (1.23a) holds, then R is made up of ¢ X I blocks R,,, and P of ¢ X q
blocks P, j, where 1 <n < N, 1<j <N and

Ry, =M(My)" ™, P, =0(>n), Pon=K, Pj =MM)" 7 Kqy(n > j).

Proof. Part (i) follows from (1.17b), and (ii) follows from the expressions for
P, ; given in (iii).

To analyse the blocks R,,, we rewrite (I +y7)R = S in terms of these
blocks, using (1.17): ~ Z;le A(A))" 7 'ByRj+ (I +vB)R,, = A(Ap)" !
(n > 1). To give this relation a more convenient form, we introduce the [ x ¢
matrix H = [O I], composed of the | x (¢ — 1)) zero matrix O and the [ x [
identity matrix I. Clearly, Ag = HA, Bo=HB, Kg=HK, My=H M. We

put A=AH, M = M H, so that
n—1 .
vY A"IBR; + (I+yB)R, = A" 'A (n>1).
j=1

We modify this relation, by premultiplying it with A and replacing n by n —
1. Subtracting this modified equality from the original one, we obtain (I +
YB)R, = AR,_1,so that R, = M R,,_1 (n > 2). Hence R,, = (M)" 'Ry =
(M)"YM = M (My)"~* (n >1).

To complete the proof, we conclude from (I +~T)P = vT and (1.17b),
that P has a block Toeplitz structure, with g x ¢ blocks P, ; = P,_;41 where
P, =0 (k <0), P, = K. Similarly as above we find v Z?;ll/ik_jB P; +
(I+~vB)P, = yA* 1B (k > 1) and (I + YB) P, = AP;_1, so that P, =
(M)F1K = M My K, (k> 2). O

1.3.3 Examples of actual boundedness results obtainable
from the theory

This section only serves to make evident the practical relevance of the generic
process (1.16) and the applicability of the above theory to the boundedness anal-
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ysis of given GLMs, see Definition 1.2.1. Accordingly, below we will illustrate
the theory by applying it just to a few actual numerical methods.

For ease of presentation, and also to illustrate (1.25), (1.26) and Theo-
rem 1.2.4 with r < m, we deal throughout this section with autonomous prob-
lems —i.e. F'in (1.1) is independent of ¢, and (1.5) reduces to

lv+70F(v)|] < |v| (forveV). (1.40)

Below we shall study boundedness of various methods, by looking for stepsize
coefficients v and constants p such that

Condition 0 < At < - 7y implies boundedness with constant g, (1.41)
cf. Definition 1.2.1, whenever V is a vector space with seminorm
||l and F: V — V satisfies (1.40).

Clearly, when (1.41) holds with ¢ = 1, then ~ is a stepsize coefficient for
monotonicity.

Two explicit RKMs

Following Gottlieb & Shu (1998), we consider two explicit RKMs (1.2), with s =
2, the nonzero coefficients of which are given by (1.42) and (1.43), respectively:

ag1 = 1, a3] = az2 = 1/2, (142)
a1 = —20, asy = 41/40, asg = —1/40 (143)

Both methods are of second order and yield identical numerical approximations
when applied to linear autonomous problems.The first method is monotonic
((1.41) with p = 1) with stepsize-coefficient v = 1, whereas for method (1.43)
there exists no positive stepsize-coefficient v for monotonicity, cf. e.g. the paper
just mentioned and Ferracina & Spijker (2004) or Higueras(2004).

To analyse for both methods the boundedness property (1.41) (with arbi-
trary p > 1), we represent the methods as GLMs (1.12) with coefficient matrices
A, B —as indicated in Section 1.2.1 - and consider the corresponding canonical
representation of N > 1 steps, cf. (1.15), (1.16), (1.17). Because F' is indepen-
dent of ¢, we have properties (1.25), (1.26) with »r =1, J; = {1,--- ,m}. From
(1.17) one sees that (1.30) and (1.31) are fulfilled, so that Theorem 1.2.4 can be
applied. It follows that property (1.41) is present if and only if condition (1.23)
is fulfilled (for all N > 1). From Lemma 1.3.5 we see that conditions (1.23a),
(1.23b) are fulfilled, with any v > 0, for both methods. In order to express the
dependence of (1.23c) on N, we put pux = ||(I — |P|) 7} |R]||-

For method (1.42), when N > 1, it is possible to find by a computation
based on Lemma 1.3.5 that

py=1 (for0<y<1), py=01+2y(—-1))" (fory>1).

Hence, for any given p > 1, the largest stepsize-coefficient -, for which method
(1.42) has the boundedness property (1.41), is equal to v = 1.
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For method (1.43), a similar computation yields uny = (1+ 25 +~*)V ! (14
40v) for N > 1 and 0 < v < 2). From this expression we can conclude that
there exists no positive v for which method (1.43) has the boundedness property
(1.41) with any p > 1.

We think these conclusions, about methods (1.42), (1.43), nicely supplement
and confirm the discussion of the methods, as presented in Gottlieb & Shu
(1998): method (1.42) is superior to (1.43) not only regarding monotonicity,
but also with respect to boundedness.

We have not displayed the details of the computations leading to the above
expressions for py, because we want to keep the size of the chapter within
reasonable limits.

A two-stage RKM depending on a parameter 6

We shall give an example showing that the canonical representation of N steps
of an (irreducible) RKM can fail to satisfy the irreducibility condition (1.30),
with the result that Theorem 1.2.4 does not yield a necessary condition for
boundedness. The example will also provide an instance of a non-canonical rep-
resentation yielding a boundedness result that is not obtainable via the canon-
ical representation. Finally, it will show, unlike the examples in Section 1.3.3,
that the restrictions on  for boundedness of RKMs can be less severe than for
monotonicity.

We consider the two-stage RKM, given by (1.2) with s =2, a11 =a12 =0,
a1 = a3 = 1 —10, asa = aso = 0, with real parameter . We write the
method concisely as (1.12) with [ =1, ¢ =2, A = < 1 >, B = < . 00 2 >,
and consider the corresponding canonical representation (1.16) of N consecutive
steps of the method. We see from Lemma 1.3.5 that (1.23a), (1.23b) hold, if
and only if 1 +2+60 > 0. Assuming this inequality to be fulfilled, it is possible
to find by a computation using Lemma 1.3.5, that uy = [|(I — |P|)7! |R|||
equals uy = AN (N > 1), where

) = [T+ (0=1D)| +~0—1]
- 1+y0—~16

> 1.

We see that A = 1, if and only if

0<6<1, ~(1-0) < 1. (1.44)
This does not allow us to conclude via Theorem 1.2.4 —with » = 1, J; =
{1,---,m} as in Section 1.3.3 - that condition (1.44) is necessary for bounded-
ness (property (1.41) with any fixed p > 1), because the irreducibility condition
(1.30) on [S T'] is violated for N > 2.

On the other hand, Theorem 1.2.4 can be applied — with » = 1, J; =
{1,--+,m} —to the canonical representation for N = 1, because [S T | = [ A B]
satisfies (1.30). Since p; = A, condition (1.44) is necessary and sufficient for
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monotonicity ((1.41) with p = 1); this follows also e.g. from Corollary 1.3.4,
from Ferracina & Spijker (2004) or Higueras (2004).

To prove that boundedness is possible under a weaker condition than (1.44),
we represent N steps of the method —not canonically — by (1.16) with [ = 1,
m=N,sp,1=11t,;=0( >n),ty; =0 (j =n), t,; =1 (j <n)and
Yn = Up, 1 = ug + At (1 — 0) F(up). Since [S T'] now satisfies (1.30) (with
r=1,1=1{1,...,m}), we can apply e.g. Corollary 1.3.4 to the situation at
hand. A computation shows that (1.33) holds if and only if 0 < 6, v (1—0) < 1.
Hence, for any 6 > 1, v > 0, the conditions (1.6), (1.40) imply that

hunll < flzn ] = || (14 E28 ) g — G2

70 70

(o + 70 F(uo))|| < 1ol

with p=14+2(0-1)~.

In conclusion, for # > 1, there exists no positive stepsize coefficient for
monotonicity, whereas any v > 0 is a stepsize coefficient corresponding to the
boundedness property (1.41), with p=1+2(6 —1)~.

One-leg Adams-Bashforth method

We consider the so-called one-leg version of the second order Adams-Bashforth
method,
Up = Up_1 + AtF(% Up_1 — %un_g), (1.45)

cf. e.g. Butcher (1987), Hairer, Norsett & Wanner (1987), Hairer & Wanner
(1996). This method is not monotonic, in that there exists no positive v with the
property that (1.40), (1.45), (1.6) always imply |Ju,| < max {||un—1||, ||tn—2]}-
This follows e.g. directly from Spijker (1983, Theorem 3.3).

We will see that, in spite of the above negative result, there exist positive ~y
and p such that

lunll < p-max {||ugl|, [Jui]|} (for 0 < At <~ -7, and all n > 2), (1.46)

as soon as (1.40) and (1.45) (for n > 2) are in force.

Below we shall prove this boundedness result by rewriting method (1.45) as
a GLM, and applying Corollary 1.3.3 in combination with Lemma 1.3.5 to the
canonical representation, cf. (1.15), (1.16), (1.17).

We introduce, for n > 1, the vectors u£"] = —%un_l + %un, vé"] = Uy,
vgn] = Up41 and u[ln_l] = Up_1, u[Qn_l] = u,, so that (1.45) is equivalent to the
GLM (1.12), with

103
~1 3 0 0 0
g=3, =2 and A= 0 1 , B= 00 0
0 1 1 0 0

Clearly, if this GLM satisfies (1.41) with positive 7y, u, then method (1.45) has
the boundedness property mentioned above, cf. (1.46).
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In order to apply Corollary 1.3.3 to the canonical representation of the GLM,
we have to check conditions (1.33a), (1.33b) and (1.36). Because B is strictly
lower triangular, we see directly from Lemma 1.3.5 (i) that (1.33a) is fulfilled
for any v > 0.

To analyse (1.33b) we consider, for any v > 0, the expressions for the blocks
P, ; given by Lemma 1.3.5 (iii). One easily sees that P, ; > 0 (j > n). Fur-
thermore, it can be seen that P, ; > 0 (for j = n —1 and j = n —2) if and
only if v < 4/9. From now on we assume v = 4/9. In the analysis of P, ;
with j < m — 3, via Lemma 1.3.5 (iii), it is convenient to use the following
representation for the powers of My:

(Mo)k _ < Tk—1  Yk-1 )7
Tk Uk
where xj41 = %xk + %xk,l, z9g = 0, z1 = % and yr41 = %yk + %yk,l,
yo=1, y1 = % (for £ > 1). Substituting this representation (with k =n—j—1)
in the expression for P, ; of Lemma 1.3.5 (iii), it can be seen that P, ; > 0 (for
j < mn—3), which proves (1.33b).

The first inequality in (1.36) is fulfilled —with spr(P) = 0— because the
blocks P, , are strictly lower triangular. A computation, using the above
representation for (My)*, shows that the remaining inequalities in (1.36) are
fulfilled as well, with ¢; = 2 (for j = 1), o; = 372" — (—-1)"] (for j =
3n—2,n >2), 0 =3 "H2"2 — (=1)"] (forj =3n—1,n > 1), g =
372273 + (=1)"] (for j = 3n,n > 1) and o = 31/4, 7 = 3/2. The up-
perbound (14 7)o of Corollary 1.3.3 thus amounts to 155/12, from which we
conclude that method (1.45) has the boundedness property (1.46), with v = 4/9
and g = 155/12 ~ 12.9.

A smaller value for g can be obtained by a straightforward —but slightly
longer — computation of the expression © = max; ¢; + 7 - max; Zj |tij| 0j, see
Corollary 1.3.3. In this way one can arrive at a similar conclusion as above, but
with v = 4/9 and the better value = 31/9 ~ 3.4.

We note, for completeness, that the above results could not have been ob-
tained by a similar application of Corollary 1.3.2, instead of Corollary 1.3.3,
because condition (1.33c) is violated, in the situation at hand, for all N >
1 and v > 0.

A two-stage GLM

Our last example illustrates that conclusions about boundedness can sometimes
be reached by a rather short calculation. We consider the second order method
for solving (1.1) (with F(t,v) = F(v)),
u[ln] = —u[lnfll + 2u[2n71}, (1.47a)
u = W A P, (1.47b)
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where u&"_l] ~ u((n — 1/2) At) and u[2"_1] ~unAt) (n=1,2,3,...). We

write the method as (1.12), withl =¢ =2, A = ( -2 ), B = < 00 ), and
0 1 1

consider the corresponding canonical representation (1.16), cf. (1.15), (1.17).
Because the matrix [ S 7T'] satisfies the irreducibility condition (1.30) with r =
1, 33 ={1,...,m}, we can apply Theorem 1.2.4 in the situation at hand.

Let any v > 0 be given. From Lemma 1.3.5 we see easily that the corre-
sponding matrices T, P satisfy conditions (1.23a), (1.23b). By Theorem 1.2.4,
the boundedness property (1.41) thus holds, for any given u, if and only if
iy = (I — [P))~" | B[l is such that sup {un : N > 1} < p.

Because (I — |P|)~!|R| > |R|, we see from Lemma 1.3.5 (iii) that puy >

|Rlloc > [|MY| 0, with M asin (1.39). From the expression M = < -1 2 ),
yoo1-2v
it follows that spr(M) =~ + /142 > 1, so that puy — oo for N — oo.
We conclude that there is no boundedness, in the sense of (1.41), for any
positive v and p.

1.4 Proof of Theorems 1.2.2, 1.2.4

Because Theorem 1.2.2 follows from Theorem 1.2.4 by choosing in the latter
theorem the trivial index sets I, = {p} (for 1 < p < m = r), it is enough to
prove below Theorem 1.2.4.

The sufficiency of condition (1.23), in parts (i) and (ii) of Theorem 1.2.4, is
a direct consequence of Proposition 1.4.2, to be given in Section 1.4.1, and the
fact that (1.20) implies the three properties (1.27), (1.28) and (1.29) (for any
index sets J, as in (1.25)).

The necessity of condition (1.23), in Theorem 1.2.4, follows directly from
Proposition 1.4.6, to be given in Section 1.4.2, and the fact that property (1.27)
implies both (1.28) and (1.29).

1.4.1 Sufficiency of condition (1.23)

In the following, we shall write (1.16) and similar relations more concisely, by
using the following notations relevant to the vector space V. For any integer

k> 1 and vectors z1, ...,z € V, we denote the vector in V¥ with components
x; by
xy
x=[z] = : %N
L

Furthermore, we denote with a bold-face letter the linear operators from V* to

V™ determined in a natural way by m x k matrices: for any matrix A = (a;;) €

R™** and o = [z;] € V¥ we define A(z) = y, where y = [y;] € V™ is given by
k )

Yi=2j=y aijxy (1 <i<m).
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We combine the vectors x; and y;, occurring in (1.16), into vectors © = [z;] €

V! and y = [y;] € V™, respectively. Furthermore, for given functions F; : V — V

(1 <i<m), we define a function F, from V™ to V™, by F(y) = [Fi(y;)] € V™

for y = [y;] € V™. With these notations, the relations (1.16) can be written as
an equality in V"™

y = Sz + At- TF(y). (1.48)

The subsequent lemma is a variant to Spijker (2007, Lemma 4.1). It will
be useful, in the present section for proving Proposition 1.4.2, and later on
for proving Proposition 1.4.6. We shall use the notations 1.22, and relate 1.48
—with F; satisfying (1.18), (1.26) — to the conditions

y=Rz + Pz with |z <|wl (1<i<m), (1.49a)
y; # y; whenever z; # z; and 7, j belong to the same index set J,.(1.49b)

Lemma 1.4.1. (Reformulation of (1.48) with F; satisfying (1.18), (1.26)). Let
70 >0, v >0, I+~T invertible, and assume (1.25). Let v = [x;] € V! and
y = [yi] € V™ be given. Then the following three statements are equivalent:

The vectors x, y satisfy (1.48) for some At with 0 < At <-~y-19 (1.50)
and some functions F; : V — 'V satisfying (1.18), (1.26); ’

The vectors x, y satisfy (1.48) with At =~ - 19 and some func- (1.51)
tions F; : V — 'V satisfying (1.18), (1.26); ’

There exists a vector z = [z;] € V™ such that (1.49) holds. (1.52)

Proof. Assume (1.50). In order to prove (1.51), we define 8 = At/(vy79) and
F; = 0 - F;, so that x, y satisfy (1.48) also with At = ~ - 75 and F} replaced
by E;. Clearly, F; = Fj for i, j in the same index set, and |[v + 70 F;(v)|| =
(1 =0)v+0[v+ 7 F;(v)]]| <|lv|l. This implies (1.51).

Assume (1.51). In order to prove (1.52), we rewrite (1.48) as

(I+~T)y= Sx+~T[y+70F({y),

from which we see that z, y satisfy (1.49a) with z = [z;] = v + 70 F(y).
Furthermore, when z; # z; and 4, j belong to the same index set J,, we have
yi + 70 Fi(yi) # y; + 70 Fi(y;), which implies (1.49b). Hence, (1.52) holds.
Assume (1.52). We shall prove (1.50). For i € J, we define Fj(v) =
(1/70) (21 — yx) (if v = yi, k € J,) and Fj(v) = 0 (otherwise). In view of
(1.49Db) this is a proper definition, and F; = Fj for 4, j in the same index set,
i.e. (1.26). Furthermore, we see that z, y satisfy (1.48) with At = v - 79. Fi-
nally, for i € J,, we have ||v+ 79 F;(v)|| = ||z&| < [Jv]| (if v = y&, k € T,,) and
llv+ 70 Fi(v)]| = ||v]| (otherwise), so that (1.18) is fulfilled. This completes the
proof of (1.50). O
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Proposition 1.4.2. (Sufficiency of condition (1.23) for property (1.20)). Let
7o > 0 be given, and assume 7y, u are positive constants such that (1.23) holds.
Then process (1.16) has the boundedness property (1.20).

Proof. Assume condition (1.23) is fulfilled, and consider z;, y; satisfying (1.16),
in the situation where (1.18) holds and 0 < At <~ - 7. Applying Lemma 1.4.1
(with the trivial index sets I, = {p}, 1 < p < r = m), we have (1.49a), from
which we obtain

Ulyill ] < [llrall 1+ 1Pzl < [llrall+ 1P] [Hlyall ], with [ri] = Ra.

Consequently, (I —|P]) [|lyill] < [l|r:||]- By Lemma 1.3.1, the matrix I —|P| is
invertible with (I — |P|)~! > 0. Therefore, [||y;||] < (I —|P])~'[|7:]l], which
implies

Hwill] < (2= 1P~ RI [l ]- (1.53)

An application of (1.23c) shows that the components in the right-hand member
of the last inequality do not exceed p - (max;||z;||), which completes the proof
of Proposition 1.4.2. O

1.4.2 Necessity of condition (1.23)

In this section we shall prove the necessity of condition (1.23) for properties
(1.28) and (1.29), under the irreducibility assumptions (1.30) and (1.31), re-
spectively. We assume throughout the section that 7y, 7, p are given positive
constants and, unless stated otherwise, that J, are arbitrary given index sets of
type (1.25).

Formulation of Proposition 1.4.6

To demonstrate the necessity of condition (1.23) we will formulate Proposi-
tion 1.4.6. To prove this proposition we will need three lemmas, the first of
which is

Lemma 1.4.3. (Invertibility of I + ~T'). Property (1.28), as well as property
(1.29), implies that the matriz I + T is invertible.

Proof. Assume (1.28) or (1.29). Let n = [;] € R™ with (I +~vT7)n = 0. We
shall prove n = 0.

We define F;(v) = —(1/79) v (for all v € V =R™), so that (1.26), (1.18) are
fulfilled with || - || = || - ||cc- We see that (1.16) is satisfied, with At = v - 79, by
the vectors z; = 0 (1 < i <) and y; = n; €1 (1 <1i < m), where e is the first
unit vector in V = R™.

By (1.28) or (1.29), there follows |1;| = ||yi|loc < pt-max;j||z;loc = 0, so that
n=0. O
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In proving that property (1.28) implies (1.23), we shall make use of vectors
¢ =[¢] € Rt and n = [n;], ¢ = [¢;] € R™ satisfying the following condition:

n = RE&+ P ¢, with n; # n (for all 7 # k belonging to the same

index set J,). (1.54)

Furthermore, in proving that the (weaker) property (1.29) implies (1.23), we
shall use vectors £ = [§;] € Rl and n = [n;], ¢ = [(;] € R™ satisfying the
subsequent (stronger) condition:

n=RE&+ P ¢, with |¢5] < |n;] (for 1 < j <m), and n; # ny (for

all j # k belonging to the same index set J,). (1.55)

We shall see that vectors &, ), ¢ exist satisfying conditions (1.54) and (1.55),
respectively, if the following (simplified) versions of assumptions (1.30) and
(1.31) are fulfilled:

[ST](,:) #[ST](,:) (ifi+# j belong to the same index set J,), (1.56)

[ST](i,:)#[ST](j,:) (if i # j belong to the same index set Jp). (1.57)

Our proof of Proposition 1.4.6 needs also the following two lemmas.

Lemma 1.4.4. (Relevance of (1.54), (1.55) for condition (1.23)).
(i) Assume (1.28), and suppose &, n, ¢ satisfy (1.54). Then (1.23) is fulfilled.
(ii) Assume (1.29), and suppose &, n, C satisfy (1.55). Then (1.23) is fulfilled.

Lemma 1.4.5. (Conditions for (1.54), (1.55)). Let I +~T be invertible. Then
the following two implications are valid.

(i) Assumption (1.56) implies the existence of &, n, ¢ satisfying (1.54).

(ii) Assumption (1.57) implies the existence of &, n, ¢ satisfying (1.55).

Since the proof of these two lemmas is rather long, it will be given separately
in Section 1.4.2.

Proposition 1.4.6. (Necessity of condition (1.23) for properties (1.28), (1.29)).
(i) Assume (1.28) and irreducibility in the sense of (1.30). Then (1.23) holds.
(i1) Assume (1.29) and irreducibility in the sense of (1.31). Then (1.23) holds.

Proof. Because of Lemma 1.4.3, we can assume that I + 7T is invertible.

In order to prove Part (i) of the proposition, we assume (1.28), (1.30). We
denote by I° the set of all indices i, with 1 <7 < m and T(:,i) = 0.

First, assume there are no index sets J, containing a pair of indices i # j
with j € I°. Conditions (1.30) and (1.56) are then equivalent. Hence, combining
Lemma 1.4.5 (i) and Lemma 1.4.4 (i), we obtain (1.23).

Next, assume there do exist sets J, containing indices ¢ # j where j € I 0,
We note that the functions F}, with j € 19, do not enter actually in the basic
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relations (1.16). Accordingly, it is immaterial for these relations whether or not
a given function Fj, with j € I°, is equal to any F; with ¢ # j. Therefore, we
can refine the given partition J; U---UJ,. = {1,--- ,m} into one with regard
to which properties (1.28) and (1.56) hold: the refined partition is obtained,
from the original one, by creating new separate index sets for all indices j € I°
belonging to an (old) index set J, with at least two different indices.

From (the original) property (1.28) one sees that (1.28) is still present with
regard to the new, refined partition. Moreover, the original property (1.30) im-
plies that (1.56) is valid with regard to the new index sets. Therefore, we arrive
at (1.23), again by combining Lemma 1.4.5 (i) and 1.4.4 (i) (in the situation of
the new partition).

To prove Part (ii) of the proposition, assume (1.29), (1.31), and define I° as
above.

First assume there are no sets J, containing indices ¢ # j where j € I v,
Conditions (1.31) and (1.57) are then equivalent. Hence, Lemmas 1.4.5 (ii) and
1.4.4 (ii) yield (1.23).

Next assume there do exist sets J, with indices ¢ # j where j € I 0. Using
the above refined partition, similarly as in the proof of Part (i), we arrive again
at (1.23) by combining Lemma 1.4.5 (ii) and 1.4.4 (ii). O

Proof of the Lemmas 1.4.4, 1.4.5

The sole purpose of the present section is to prove Lemmas 1.4.4, 1.4.5. Through-
out the section we assume, with no loss of generality, that I 4+~ 7T is invertible.
We shall use the notation

sgn(a) =1 (for > 0),  sgn(a) = —1 (for a < 0).

Proof of Lemma 1.4.4

The proof of this lemma is divided into several parts.

Part 1a. Assume (1.28), and let £, 7, ¢ satisfy (1.54). We shall prove (1.23b)
via Lemma 1.3.1, by assuming that A and ¢ satisfy (1.32), and deducing a
contradiction from that assumption.

We shall prove ¢ = 0, by using special vectors z = [z;] € Vland y =
lyjl, z = [z;] € V™, where x;, y;, z; € V=R" have components x;;, ¥ij, Zij,
respectively. We define, for 1 <¢<m, 1 <j<m, 1 <k </,

l m

i =0,  zij =sgn(pi;) 0j, Yij = erk Tik + ijk Zik-
k=1 k=1

We have y = Rz + P z, and because y;; = > 1, [pjr| ¢r = A;j, there follows
1Zilloe = l2ij] = 05 <5 = lyjlle A <i<m, 1<j<m). (1.58)

First, suppose y; # yi for all j # k belonging to the same index set J,,.
Then x, y, z satisfy (1.49), with || - || = || - [lco, so that, by Lemma 1.4.1, the
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vectors x, y satisfy (1.51) with V=R™ ||| =] - |lc. By property (1.28) and
(1.58), there follows |¢|loc < max;||y;jllcc < p- maxy||zk|lec = 0. Hence ¢ =0,
which contradicts (1.32) and thus proves (1.23b).

Next, suppose y, = ys for two indices ¢ < s belonging to the same set J,.
In this situation, we modify (only) the g-th component of all z;, y;, z; into
ZTqj = &y Ygj = Njs Zq5 = (j, and we denote the resulting vectors by Z;, 9;, Z;,
respectively. The vectors Z = [Z;], § = [;], Z = [Z;] satisfy the following variant
of condition (1.49):

gy=Rz+PZz, y;#ys (forall j #k in the same index set). (1.59)
In order that Z, g, Z actually fulfill (1.49), we define the special seminorm
9]l = max {[¢s] =i #q}  (for all ¥ = [1hi] € V.=R™).
Because y;, z; satisfy (1.58), we have
1250 = 1zjlloe < llyjlloc = 1751l (for 1 <j <m) (1.60)

(where ||yj||<>o = ||gj||7 with j = ¢, follows from: ”qu = [19sll = llysllo =

19qllo0)-
Clearly, with the above special seminorm in V, the vectors z, g, z fulfill

(1.49), so that &, g satisfy (1.51). Using property (1.28) and the last equality in
(1.60), we find max;|[y;lc = max;|[7;| < p - maxy||Zx|| = 0. In view of (1.58),
it follows that ¢ = 0, which proves (1.23b).

Part 1b. Assuming (1.28), (1.54), we shall prove (1.23c). We have |[(I —
[P R|loo = |lolloo, With ¢ = [¢;] € R™, where the values o; > 0 satisfy the
linear equations

l

m
pi =Y Irikl+ D Ipkler (1 <j<m).
k=1 k=1

Condition (1.23c) is thus equivalent to

lelloo < pe (1.61)

We shall prove this inequality, using again some special vectors © = [z;] €
Vland y = [y;], 2 = [2;] € V™, where z;, y;, z; € V = R™ have components
Tij, Yij, Zij. In view of the linear equations satisfied by ¢1,..., ¢m, we define
now

l m
zik = sgn(rik),  2zij = sgn(pij) vj,  Yij = erk Tk + ijk Zik-
k=1 k=1

Clearly y = Ra + P z, and because y;; = Zﬁczl 7k + > pey Pkl ok = ¢j, the
relations (1.58) are again fulfilled.
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First, suppose y; # y for all j # k belonging to the same index set J,. Then
x, y, z satisfy (1.49), with || - || = || - [, so that, by Lemma 1.4.1, the vectors
x, y satisfy (1.51) with V=R"™, ||| = - |lcc- By property (1.28) and (1.58),
there follows ||¢||c < max;||yjllco < g - maxg||zk|lcc = p, which implies (1.61).

Next, suppose y, = ¥s, Where ¢ < s belong to the same set J,. We modify
the g-th component of x;, y;, z; as above in Part 1a of the proof. The resulting
vectors T = [Z;], § = [y;], Z = [Z;] satisfy again (1.59), and —in view of (1.58)—
they satisfy also (1.60).

Consequently, Z, g, Z fulfill condition (1.49), so that Z, g satisfy (1.51) with
the special seminorm defined above. Using property (1.28) and the last equality
in (1.60), we find max;||y;|lcc = max;||g;| < p - maxy||Zx| = p, which proves
again (1.61).

Part 2a. Assume (1.29) and (1.55). We shall again prove (1.23b) via Lemma
1.3.1.

Denote by A and ¢ = [@i], & = [2;] = [[zi5]], y = [y;] = [lyis]], 2 = [5] =
[[zi;]] the same scalar and vectors as in Part la of the proof, so that ( 1.58) is
again in force.

First, suppose y; # yi for all j # k belonging to the same index set J,,.
Similarly as in Part la, we arrive at ¢ = 0, which proves (1.23b).

Next, suppose y, = ys where ¢ < s belong to the same set J,. Define
Zj, Jj, Z; as in Part la, but now with &, », ¢ satisfying (1.55). We have again
(1.59), (1.60), and therefore

1Z5lloc = max{[|Z], ¢;1} < max{|[g; ], [n;1} = 17]loc- (1.62)

Hence, Z;, y;, Z; satisfy (1.49) with ||-|| = ||-||s. Via Lemma 1.4.1 and property
(1.29) we obtain ||g;|lec < - [|€]|oc, and in view of (1.58), (1.60) there follows
[elloo < - [|€]loc-

By suitable scaling of £, 1, ¢, with property (1.55), we can achieve that |||~
is arbitrarily close to zero. Hence, ¢ = 0, which proves (1.23b).

Part 2b. Assuming (1.29), (1.55), we shall prove (1.23c).

The beginning of the proof runs as in Part 1b above, using (1.55) instead of
(1.54). We arrive again at (1.23c), via (1.61), if y; # yi for all j # k belonging
to the same set J,.

If y, = ys, for some g < s belonging to the same J,, we proceed as in Part
2a above, and introduce Z;, g;, Z; satistying (1.49) with || - || = || - ||cc. From
Lemma 1.4.1 and property (1.29) it follows that ||7;[lcc < p- maxp{l, ||¢]|s},
and in view of (1.58), (1.60) we obtain |¢|lecc < p- maxi{l, [|€]|c}-

By arranging that [|{|lcc < 1, we obtain (1.61) and therefore also (1.23c).
O
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Proof of Lemma 1.4.5

Part 1. For given ¢ = [§;] € R! and A = [\;] € R™, one can define n = [1;], ( =
[G:] € R™ by

mzzé‘ikfk+zm)\k, G=m+N/y (1<i<m). (1.63)
k k

The definition is easily seen to imply
n=RE+ PC. (1.64)

This simple implication will be used, several times, below.
Assuming (1.56), one can see that &, \; exist, such that 7;, defined by (1.63),
satisfy
n; #n; (for any ¢ # j in the same index set J,). (1.65)

Because (1.63) implies (1.64), it follows that &, n, ¢ exist satisfying (1.54).
Part 2. Assuming (1.57), we shall determine scalars €, g, &, with
0 <epp <27, (1.66)

such that the system of equations

niZZSikgk—é‘Ztik‘uknk (1§i§m) (1.67)
k k

has a solution n = [n;] satisfying (1.65). Using the implication (1.63) = (1.64)
(with A; = —e u;m;), one sees that such scalars e, ui, { lead to (1.55) (with
G =(1- ) ).

To find €, pg, & with the above properties, consider first any fixed g, &,
and note that the corresponding system (1.67) has a solution n; = »;(¢), for
€ > 0 small enough, with

ni(e) = 0'1'—57'1'4-0(82) (fore ] 0), o; = Zsik e, T = Ztik oy k- (1.68)
k k

Aiming at (1.65) (with n; = n;(g)), we are lead by (1.68) to fix & such that
o; # oj (for S(i,:) # S(j,:)), 0: #0 (for S(3,:) # 0).
Below we shall specify py, in terms of values o which are determined such that
sgn(gk) = sgn(oy) (for 1 < k < m) and Y, tix ok # > tjk or (for T'(i,:) #
T(j,:)). We define pp = o /ox (if o # 0) and pr = 0 (if o, = 0). It follows
that
pe >0 (for 1 <k <m) and 7 #7; (for T(i,:) #T(j,)).

Because of (1.57), the values o;, 7; corresponding to &k, ux thus specified,

satisfy

(0i, i) # (0, 7;) (for any i # j in the same index set J,).

Combining these inequalities with (1.68), it follows that (1.65) (with n; = n;(¢))
and (1.66) hold for sufficiently small ¢ > 0. Hence ¢, pg, & exist with the
properties stated above. O
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Chapter 2

Special boundedness properties in
numerical initial value problems

For Runge-Kutta methods, linear multistep methods and other classes of general
linear methods much attention has been paid in the literature to important non-
linear stability properties known as total variation diminishing (TVD), strong
stability preserving (SSP) and monotonicity. Stepsize conditions guaranteeing
these properties were studied by Shu & Osher (1988) and in numerous subse-
quent papers. Unfortunately, for many useful methods it has turned out that
these properties do not hold. For this reason attention has been paid in the re-
cent literature to the related and more general properties called total variation
bounded (TVB) and boundedness.

In the present chapter we focus on stepsize conditions guaranteeing bound-
edness properties of a special type. These boundedness properties are optimal,
and distinguish themselves also from earlier boundedness results by being rele-
vant to sublinear functionals, discrete maximum principles and preservation of
nonnegativity. Moreover, the corresponding stepsize conditions are more eas-
ily verified in practical situations than the conditions for general boundedness
given thus far in the literature.

The theoretical results are illustrated by application to the two-step Adams-
Bashforth method and a class of two-stage multistep methods.

2.1 Introduction

2.1.1 Bounds for numerical approximations

In this chapter we deal with the numerical solution of initial value problems of
the form

U =Ftu) (20), u0)=u. (2.1)
We shall study a wide class of numerical methods for solving such problems;
thereby basing our study on the analysis of an abstract generic numerical process
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of the type
l m
yi= sy wy + At Yty Fily) (L<i<m). (2.2)
Jj=1 j=1

Here At > 0 denotes the stepsize, the vectors z; (1 < j <) are the input vectors
of the process, and y; (1 < ¢ < m) the output vectors. In applications to concrete
numerical methods, the output vectors usually stand for approximations to the
exact solution u(t) of the differential equation at certain time levels #;, that is,
yi = u(t;) (1 <i<m), and Fi(y:) = F(ti, yi)-

The process (2.2) is in particular relevant to the important and very large
class of general linear methods (GLMs), introduced by Butcher (1966), cf. also
e.g. Butcher (1987), (2003), Hairer & Wanner (1996), Hairer, Norsett & Wanner
(1993). This class comprises, e.g., all Runge-Kutta methods, linear multistep
methods and multistep-multistage variants thereof.

We can represent N > 1 consecutive steps of any GLM canonically by a
process of the generic type (2.2) with m = N(s + r), where s is the number of
internal stages and r the number of external stages computed at each step of the
GLM. In this situation, the vectors x; (1 < <) stand for the starting vectors
of the GLM, whereas the vectors y; (1 <4 < m) represent the N - s internal and
N -r external stage approximations computed during the N steps. Furthermore,
the parameter matrices S = (s;;) € R™*! T = (t;;) € R™*™  corresponding
to the process (2.2), are determined by the number of steps N as well as by
the coefficients of the given GLM. Detailed examples of such representations,
as well as alternative representations of actual multistep-multistage methods,
can be found in Spijker (2007) for N = 1 and in Chapter 1 for N > 1; cf. also
Section 2.4 of this chapter.

We denote by V the vector space on which the differential equation is defined,
and by || || a real functional on V, i.e. |[v|| € R for all v € V. In the rest of the
present section, we assume || - || to be a convex functional, i.e.

Mo+ (1 —=XNw|| < Mo+ Q=N ]|w|]] for0<A<1andv,weV). (2.3)

In applications, || - || will often be a norm or seminorm, see (2.16) below. But,
more general convex functionals are useful as well, notably in connection with
discrete maximum principles and preservation of nonnegativity; cf. e.g. Spijker
(2007) and Section 2.3.4 of the present chapter.

For the generic process (2.2), as well as for special instances thereof, much
attention has been paid in the literature to the derivation of suitable upper
bounds for ||y;|[, in terms of the input vectors x;, under the basic assumption
that for given 7y > 0

lo+ 70 B()|| < [lo]| (for 1< i < m, and v € V); (2.4)

cf. e.g. Ferracina & Spijker (2004), Gottlieb, Ketcheson & Shu (2009), Gottlieb,
Shu, & Tadmor (2001), Higueras (2004), (2005), Hundsdorfer & Ruuth (2003),
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(2006), Hundsdorfer, Ruuth & Spiteri (2003), Shu & Osher (1988), Spijker
(2007).

In most papers, the focus has been on the situation where the coefficients of
the generic process satisfy the condition

Si1t+sio+--+sip=1 (1<i<m). (2.5)

In case the process (2.2) stands for just one step (N = 1) of a GLM, this condi-
tion corresponds to preconsistency, cf. Spijker (2007), Butcher (2003). Hence-
forth we will refer to (2.5) as the preconsistency condition for process (2.2).

For preconsistent generic processes representing one step of a GLM, the
bound

Iyl < s oyl (for 1< 0 < m) (2.6)

has received much attention. The process has been called monotonic or strongly
stable (for given stepsize At, vector space V, functional || - || and functions
F; : V — V) if the last bound holds whenever z; and y; satisfy (2.2). Alge-
braic characterizations were derived of stepsize-coefficients v with the following
important property:

Condition 0 < At < v - 79 implies monotonicity, whenever V is
a vector space, || - || a convex function on V, and the functions (2.7)
F; 1 V — V satisfy the basic assumption (2.4);

see e.g. Spijker (2007) and the references therein.

Unfortunately, for many useful GLMs there exists no 7 > 0 such that the
above property is present, when one step of the method (N = 1) is represented
as a preconsistent process of the form (2.2); some examples are given in Sec-
tion 2.4 of this chapter. Furthermore, in important situations, processes of
generic type (2.2) arise which even fail to satisfy the preconsistency condition
(2.5). Sometimes, deeper insight into a given GLM can be gained by repre-
senting N > 1 consecutive steps of the method as such a generic process; cf.
Section 2.4.

These difficulties have led various authors to study bounds for |y;|| that
differ from the monotonicity bound (2.6) by a factor p > 1, i.e.

il < e A (for 1 <4 < m). 2.
loill < o ot | (for 1< < m) (28)

Such general bounds are formally weaker than (2.6) but still useful because
they can reveal essential boundedness properties of the numerical methods un-
der consideration, like the property of being total variation bounded - for this
important concept see e.g. LeVeque (2002). Stepsize conditions corresponding
to general bounds (2.8) were derived, e.g., in Ruuth & Hundsdorfer (2005),
Chapter 1 of this thesis.

The general bounds obtained thus far in the literature are relevant in cases
where the monotonicity property (2.7) is violated or even the preconsistency
condition (2.5) is not in force. On the other hand, these bounds suffer still from



56 Chapter 2. Special boundedness properties in numerical initial value problems

the following two inconveniences: (1) the corresponding stepsize conditions, of
type 0 < At < «-79, involve complicated conditions on v which are often difficult
to check in practice; (2) the general bounds are relevant to seminorms but not
to any wider class of functionals satisfying (2.3).

2.1.2 Scope of the chapter

The main purpose of the present chapter is to establish stepsize conditions
guaranteeing special bounds for the generic process (2.2), thereby circumventing
the two inconveniences just mentioned above. We shall find special bounds
which can still be present in cases where the monotonicity property (2.7) or
the preconsistency condition (2.5) is violated, and which are the best possible
in a definite sense. Moreover, these special bounds are relevant to a class of
functionals || - || that is wider than the class of seminorms. Finally, and most
importantly in view of applications, the corresponding stepsize conditions 0 <
At < 779 involve a condition on v which is easier to check in practice than the
conditions relevant to the general bounds given in the literature.

In Section 2.2 of this chapter, we review and extend bounds and mono-
tonicity results for the generic process (2.2), as given thus far in the existing
literature. In the Sections 2.2.1, 2.2.2, we give a brief review of known mono-
tonicity results for the generic process (2.2), thereby focussing on a classical
simple condition on the stepsize-coefficient . Moreover, we consider a property
which is a-priori more refined than pure monotonicity and we characterize in
Theorem 2.2.4 stepsize conditions guaranteeing this property. In Section 2.2.3,
we specify two generalizations of the bound |y;|| < maxi<j<; | ;| which are
relevant to generic processes which need not be preconsistent. Theorem 2.2.5
characterizes stepsize conditions guaranteeing these generalizations.

Section 2.3 contains the main theoretical findings of the chapter. In Sec-
tion 2.3.1, we formulate explicitly, for the generic process (2.2), the special
bounds mentioned above (for ||y;|| in terms of ||x;||), and mention three fea-
tures which distinguish them from more general standard bounds (2.8). In
Section 2.3.2, we study, in the situation of these special bounds, the character-
izations provided by Theorem 2.2.5. We find simplified versions of these char-
acterizations, viz. (2.25)-(2.28). In Section 2.3.3, we study the special bounds
for the case of seminorms || - ||; we find that these bounds are the best possible
in the sense specified by Theorem 2.3.4. The main theorem of Section 2.3.3,
Theorem 2.3.5, gives simplified criteria for stepsize conditions guaranteeing the
special bounds. Section 2.3.4 deals with the special bounds for the case of a
natural class of functionals — the so-called sublinear functionals — which is essen-
tially larger than the class of seminorms. Theorem 2.3.8 reveals the surprising
fact that the special bounds are the only bounds which make sense in the con-
text of general sublinear functionals. The main theorem of Section 2.3.4, Theo-
rem 2.3.9, gives among other things a mild condition under which the classical
simple condition on 7, reviewed in Section 2.2, characterizes stepsize conditions
guaranteeing the special bounds for sublinear functionals.



2.2. Reviewing and extending results from the literature 57

In Section 2.4 we illustrate the significance of the special boundedness theory
by applying it to some concrete numerical methods. For most of these methods,
the monotonicity results, as given in the literature, see e.g. Gottlieb, Ketche-
son & Shu (2009), Spijker (2007), are not (directly) applicable. Moreover, the
boundedness theory, as given e.g. in Chapter 1 would lead to very complicated
conditions. In Section 2.4.2 we study the two-step Adams-Bashforth method.
When writing one step of the method in a standard fashion as a generic process
of type (2.2), there is no v > 0 such that the monotonicity property (2.7) is
present. But, by writing N > 1 steps of the method judiciously in the generic
form (2.2), it turns out that Theorems 2.3.5, 2.3.9 yield conclusions which can
nicely be interpreted in terms of boundedness and nonnegativity preservation
of the method. In Section 2.4.3 we analyse a large class of k-step methods, con-
taining both predictor-corrector methods and hybrid multistep methods. The
monotonicity results, known from the literature, are not valid for many popular
schemes of this class. By applying Theorem 2.3.9, we will show that for many
methods of practical interest relevant boundedness properties are valid.

2.2 Reviewing and extending results from the
literature

2.2.1 Preliminaries

Let I stand for the identity matrix of order m, andlet S = (s;;), T = (t;;) denote
the coefficient matrices corresponding to the generic process (2.2). Similarly as
in Chapter 1 of this thesis, Spijker (2007), we introduce the matrices

P = (py) = (I +7T)~ (4T, R=(ry)=I+~T)7'S. (29

These matrices depend explicitly on «y, and they are defined if 7 is such that
I+~ T is invertible.

When working with P and R, the invertibility of I +~ T will be implicitly
assumed. Actually, to study boundedness properties this assumption can be
made without loss of generality. To see this, we formulate the following lemma,
which is an analogue of a result from Spijker (2007, Lemma 4.2). The proof of
this lemma is compact, so we repeat it here.

Lemma 2.2.1 (Invertibility of I + vT'). Let 79 > 0, v > 0 be given and
At =~-19. Let V=R, ||-|| = || and assume p is a constant such that the
general bound (2.8) holds whenever F; : V — 'V fulfil the basic assumption (2.4)
and y;,x; € V satisfy (2.2). Then I +~T is invertible.

Proof. Let n = [n;] € R™ such that (I +~T)n = 0. We shall prove n = 0.

We define F;(v) = —(1/m) v (for all v € V), so that the basic assumption
(2.4) is fulfilled with || - || = | - |. Clearly, (2.2) is satisfied, with At =~ - 79, by
the vectors ; = 0 (1 <4 <) and y; = n; (1 <i <m). By applying (2.8), there
follows |n;| = |y;| < p - max;|z;| = 0, therefore n = 0. O
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In the following, we shall frequently deal with values v satisfying the condi-
tion that
(I+~T)"'(vT) >0,  (I+~T)"'S>0.

These inequalities —as well as any other inequalities between matrices appearing
below — should be interpreted entry-wise. The above condition can evidently be
rewritten, less explicitly but more simply, as

P>0, R>0. (2.10)

This form can more easily be compared (than the more explicit form) with a
series of conditions on v to be studied in the rest of the chapter. In view of the
essential use of the above condition made (directly or indirectly) in the existing
literature on monotonicity, we will refer to it as the classical condition on ~y.

2.2.2 Monotonicity with arbitrary convex functionals || - ||

We shall recall briefly some concepts and results from the literature which are
related to the monotonicity property (2.7). The next two theorems follow di-
rectly from Spijker (2007, Theorems 2.2, 2.4).

Theorem 2.2.2 (Criterion for monotonicity with arbitrary convex functional
[|-1]). Consider a generic process (2.2) satisfying the preconsistency condition
(2.5). Let v > 0 be given. Then the monotonicity property (2.7) is present, if
and only if v satisfies the classical condition (2.10).

In the following, we use, for any given matrix A = (a;;), the notation Inc(A)
to denote the incidence matriz of A, given by

IIIC(A) = (&’ij)a where flij =1 (lf Q5 75 0), fLij =0 (lf Q5 = 0)

Theorem 2.2.3 (Conditions on S,T). Let the preconsistency condition (2.5)
be fulfilled. Then there is a v > 0 satisfying the classical condition (2.10), if
and only if S >0, T >0, Inc(TS) < Inc(S) and Inc(T?) < Inc(T).

Clearly, for given matrices S, T, it is rather easy, by applying Theorems 2.2.2
and 2.2.3, to see whether there is a positive stepsize-coefficient v such that the
monotonicity property (2.7) is present.

For preconsistent processes, the classical condition (2.10) will be proved
to imply an interesting variant of the standard monotonicity bound ||y;|| <
maxi<,;<; ||z;||. The variant is as follows:

l
lyall <D lsiglllal (L<i<m). (2.11)

Jj=1

Note that, when all s;; are nonnegative, the last bound is of particular interest
because it is more refined and gives, in general, more information than the
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standard monotonicity bound. Clearly, all s;; are nonnegative as soon as the
monotonicity property (2.7) is present for some v > 0; cf. Theorems 2.2.2, 2.2.3.

We shall say that process (2.2) satisfies the bound (2.11) (for given stepsize
At, vector space V, functional || - || and functions F; : V — V), if (2.11) holds
whenever z; and y; € V satisfy (2.2). The following (refined) property is an
obvious variant of the standard monotonicity property (2.7):

Condition 0 < At < 7 - 7 implies the bound (2.11), whenever
V is a vector space, || - || a convex functional on V, and the (2.12)
functions F; : V — V satisfy the basic assumption (2.4).

The following theorem shows that this property is present under the same
conditions as the standard monotonicity property (2.7).

Theorem 2.2.4 (Criterion for property (2.12)). Consider a generic process
(2.2) satisfying the preconsistency condition (2.5). Let v > 0 be given. Then
property (2.12) is present, if and only if vy satisfies the classical condition (2.10).

Proof. 1. Let the basic assumption (2.4) be fulfilled, and let 0 < At < 7 - 79,
where 7 satisfies the classical condition (2.10). We denote by Ej the kx 1 matrix
with all entries equal to 1. Note that, since R = (I — P)S and SE; = E,,, we
have RE) + PEy = By, ie. Y0y i + 0 pij = 1.

We rewrite process (2.2), using the notations (2.9), in the form

l m

Yi = Z rij T; + Z Dij (yj +9T0Fj(yj)) (1<i<m), 0=
j=1 =1

At

77'0'

We denote the column vector in R! with components ||;|| by [||2:]|], and we use
a similar notation with regard to y; and F;(y;). Using the convexity property of
the functional ||-||, there follows [||y;||] < R]||z;||]+P[||yi+6070F;(y:)||]. Because
P > 0, we have P{l|y;+0moFy(yi)|[] = PlI10(s+70F(yi)+ 1= 0wl | < Plllyil
so that
[llyalll < (L +~T) 7Sl + T = +T) ™)yl (2.13)
ie. (I+~T) " Ywll] < T +~T)"'S[l|z;]|]. In view of Theorem 2.2.3, the
matrices S and I + T are nonnegative, so that the bound (2.11) is in force.
Property (2.12) has thus been proved.
2. Conversely, assume property (2.12) is present. We shall use the notation

sgn(a) =1 (for @ >0), sgn(a)=—1 (for a < 0).

Applying property (2.12) in the special situation where V=R, |[v|| = v, F; =
0, x; = sgn(s;y;), we see from the corresponding bound (2.11) that >_ [s;y;| <
> I8ioj]88n(sig;), so that s;,; > 0. Hence, all s;; > 0.

In the general situation, the bound (2.11) thus implies, for 1 <14 < m,

lyill < D sinlleall < (D sin) maxy|a;]| = max;|a;].
n n

It follows that property (2.12) implies the standard monotonicity property (2.7)
and —by Theorem 2.2.2— also the classical condition (2.10). O
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2.2.3 General bounds with seminorms || - ||

With an eye to cases where the preconsistency condition (2.5) or the monotonic-
ity property (2.7) (with v > 0) is violated, we shall review and extend, in this
section, some results from the literature about bounds which are more general
than those considered above. We shall focus on the general bounds

A< - . <1< .
lyill = pi - e flzjl| - (for 1 <@ < m), (2.14)
l
lyill < D mg llzgll - (for 1 <i < m), (2.15)
j=1

where for the time being p; and p;; denote arbitrary coeflicients. Clearly, when
pi =1, pij = |si;], these bounds reduce to the bounds (2.6) and (2.11), respec-
tively.
In this section, we shall deal with the situation where || - || is a seminorm,
ie.
[lv+w|| < |lv]| + [[w]| and [[Av]] = |A[[]v]| (2.16)

for all real X\ and v, w € V. We shall say that process (2.2) satisfies the bound
(2.14) or (2.15) (for given stepsize At, vector space V, seminorm |.|| and func-
tions F; : V — V), if (2.14) or (2.15), respectively, holds whenever z; and y; € V
satisfy (2.2). Below we shall focus on stepsize-coefficients v which are related
to the above two general bounds by means of the following two properties:

Condition 0 < At < 779 implies that process (2.2) satisfies the

bound (2.14), whenever V is a vector space, || - || a seminorm on (2.17)
V, and the functions F; : V — V satisfy the basic assumption '
(2.4),

Condition 0 < At < 779 implies that process (2.2) satisfies the

bound (2.15), whenever V is a vector space, || - || a seminorm on (2.18)
V, and the functions F; : V — V satisfy the basic assumption '
(2.4).

In formulating conditions on 7 for these properties, we need some notations.
For any matrix A = (a;;), we define the matrix |A| by |A| = (|ai;|). For square
matrices A, we denote the spectral radius by spr(A). Furthermore we introduce
the m x 1 matrix

(Ml) = (M17 M2, 7Mm)T

and the m x [ matrix

25 R Y5V
(wij) = | - e (2.19)

Hm1 o Ul
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We shall relate properties (2.17) and (2.18), respectively, to the following
two requirements:

spr(|P]) <1 and (I —|P))"'|R|E; < (1), (2.20)

spr(Pl) <1 and (I—|P)~"|R| < (uyy). (2.21)

Note that, for given coefficient matrices S, T', these requirements amount to
conditions on v - cf. the definition (2.9) of P, R.

The following theorem is a variant of a result given earlier in Chapter 1. In
fact, when all p; are equal to each other, part (I) of the theorem is an immediate
corollary to Theorem 1.2.2 in Chapter 1 just mentioned.

Theorem 2.2.5 (Criteria for the properties (2.17), (2.18)). Consider an arbi-
trary generic process (2.2). Let v > 0 and arbitrary p,;, pi; be given. Then the
following two propositions are valid:

(I)  Property (2.17) is present, if and only if v is such that condition (2.20) is

fulfilled.
(1) Property (2.18) is present, if and only if 7y is such that condition (2.21) is

fulfilled.

Proof. The conditions (2.20), (2.21) imply (2.17) and (2.18), respectively, by
similar arguments as used in part 1 of the proof of Theorem 2.2.4. Using the
arguments of the mentioned proof and (2.16), we get now [||y;||] < |R|[||z;||] +
|P|[||y:||] instead of (2.13). There follows [||y;]]] < (I — |P|)~*|R|[||z;][]. By
(2.21) we arrive at property (2.18). Since (I—|P|)~|R|[||z;||] < (I—|P|)~ | R|E;-
maxy, ||zx||], by (2.20) we arrive at property (2.17).

The necessity of the conditions (2.20) and (2.21) can be proved by almost
the same arguments as already given in Chapter 1 (Section 1.4.2). O

Theorem 2.2.5 has a wider scope, certainly, than the theorems of Sec-
tion 2.2.2, in that p; and p;; are arbitrary coefficients and the preconsistency
condition (2.5) is not needed.

On the other hand, it is in general much more difficult to see whether the
conditions (2.20), (2.21) are fulfilled than to check the classical condition (2.10).
Moreover, unlike the theorems in Section 2.2.2, Theorem 2.2.5 is only relevant
to seminorms (and e.g. not to certain convex functionals arising in connection
with discrete maximum principles and preservation of nonnegativity). These
obvious weaknesses of Theorem 2.2.5 are among the reasons for dealing in the
following section with bounds of a very special form.

2.3 Bounds of a special form

2.3.1 Special choices for p;, p;;

Below we shall focus on the bounds of the preceding subsection in the case
where

i = 351844 and  pij = s, (2.22)
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so that the general bounds (2.14), (2.15), respectively, take the special form

l
sl < (Dlsal) - max, oyl (1 <i<m).  (223)
7j=1
l
lysll <> sl llall - (1< <m). (2.24)
j=1

Below we list three important features by which these special bounds distinguish
themselves from the general bounds considered in the preceding subsection.

First of all, property (2.17) with p; = 3_; [si;|, as well as property (2.18)
with f1;; = |si;|, can be interpreted as an extension, to all F; (satisfying the
basic assumption(2.4)), of a bound which is trivially fulfilled when F;(v) = 0.
In fact, in the subsequent Theorem 2.3.4, we shall see that the above special
bounds (2.23), (2.24) are the best possible, in the sense that, for any v > 0, the
general boundedness properties (2.17), (2.18) cannot be valid with coefficients
smaller than (2.22).

Secondly, as will be seen in Theorem 2.3.8 below, the equalities p; = 3 [s4]
are necessary in order that any bound (2.14) holds for a natural class of func-
tionals || - || that is larger than the class of seminorms. Similarly, the equalities
Wij = |si;| must be fulfilled in order that any bound (2.15) holds for this larger
class.

Finally and most importantly in view of applications, the above criteria
(2.20) and (2.21), respectively, will turn out to reduce to much simpler forms

when p; = Zj |le| or fij; = |5u|

2.3.2 Simplified conditions when p; =} . |s;;| and
pij = |8
In this section we shall analyse and simplify the above general conditions (2.20),

(2.21) in the special situations p; = >~ |si;| and pij = [si;]. Our first result is
as follows:

Lemma 2.3.1 (Conditions (2.20), (2.21) with p; = >7;[si;| and pi; = [s45])-
Condition (2.20) with ju; = |si;| is equivalent to (2.21) with pij = [sqj|.

Proof. To prove the lemma, we assume spr(|P[) <1 and p; = >, [sijl, pij =
|sis]-

Suppose condition (2.20) is fulfilled. Since (u;) = |S|E; = |(I — P)"'R|E;, <
(I —|P|)~YR|E}, condition (2.20) is equivalent to |S|E, = (I — |P|)"'|R|El,
which can be rewritten as |S|E; = |P||S|E; + |R|E;. Because of the last equality
and |S| = |R+ PS| <|R| + |P||S|, it follows that

S| = |PIIS]+ |R].

Hence, (I — |P|)7R| = |S| = (pij), which implies (2.21).
Conversely, (2.21) implies (I — |P|)~!R|E; < |S|E}, i.e. (2.20). O
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Below, we shall specify situations in which the general conditions (2.20) and
(2.21) can be simplified to one of the subsequent four requirements:

spr(|P|) <1 and |PS|=|P[|S|<|[S], [RI<|S[;  (2.25)
spr(|P]) <1 and PS=|P|S, R>0; (2.26)
spr(P)<1 and P >0, R>0; (2.27)
P>0, R>0, S>0. (2.28)

Lemma 2.3.2 (Simplifications of (2.20), (2.21) with p; = 3=, [si;[, pij = [s45])-

(I)  Condition (2.20) as well as condition (2.21), with the choice (2.22), is
equivalent to (2.25).

(II) If S >0, then condition (2.25) is equivalent to (2.26).

(IIT) If S has no row equal to zero, then the three conditions (2.26), (2.27) and
(2.28) are equivalent to each other.

Proof. (I) In view of Lemma 2.3.1, it is enough to show that condition (2.21)
with p;; = |si;] is equivalent to (2.25).

From the proof of Lemma 2.3.1 it is evident that condition (2.21), with
pij = |sij|, is equivalent to

spr(|P|) <1 and |S] = |P||S| + |R|. (2.29)

The last equality implies |P||S| = |P S|, because |S| = |PS+R| < |PS|+|R| <
|P||S| + |R|. Furthermore, because S = PSS + R, we have

S| = [PS|+ R

as soon as |PS| < |S] and |R| < |S|. It follows that condition (2.29) is equivalent
to (2.25).

(II) Assume S > 0. In order to prove the equivalence of (2.25) and (2.26),
assume spr(|P|) < 1.

Suppose (2.25) is fulfilled. Since R = S — PS and |S| = |S — PS| + |PS|,
we have

|R|+ |PS|=S=R+PS<R+|PS|=R+|P|S,

which implies R > 0 and P S = |P|S. Therefore we have (2.26).
Conversely, from (2.26) and S = R+ PS we have

|PIS] + [R| = |S| = |[PS + R| < |PS| + |R| < |P[|S| +|R].

Hence, (2.26) implies (2.25).

(IIT) Assume S has no row equal to zero. We shall prove successively that
(2.26) = (2.27) = (2.28) = (2.27) = (2.26).

Assume (2.26). Since (I —|P|)S > 0, we have S = (I —|P|)~ (I —|P|)S > 0.
Denoting by o; the entries of SE;, we have o; = Ej si; > 0 (for 1 <@ < m).
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Since (|P|—P)S = 0, we have (|P|—P)SE; = 0 and thus }; (|pi;| — pij)o; = 0.
Hence, P > 0, and therefore we have (2.27).

Furthermore, (2.27) implies that S = (I - P)"'R= (I+P+P?+...)R > 0,
so that (2.27) implies (2.28).

In order to prove that property (2.28) leads to (2.27), it is enough to show
that spr(P) < 1. Introducing D = Diag(o1,...,0m) with o; = > s;;, we have

D 'PDE,, =D 'PSE, =D *(S—R)E, < D 'SE; = E,,.

It follows that spr(P) = spr(D~*PD) < 1. Since P =1 — (I +~T)~! > 0 has
no eigenvalue 1, we conclude from the Perron-Frobenius theory (see e.g. Horn
(1988, p. 503)) that spr(P) < 1.

It is easy to see that (2.27) leads to (2.26). O

Remark 2.3.3. Let v > 0. Then condition (2.27) is equivalent to
P>0, R>0, T2>0. (2.30)

In order to show this, first assume (2.27). Then I +~y7T = (I — P)~! =
I+ P+ P?+...> I, which yields (2.30).

Next suppose that (2.30) is fulfilled. Applying the Perron-Frobenius theory
as presented e.g. in Horn (1988, p. 503), it follows that there is a vector z € R™
with 0 < o # 0, such that Px = Az where A = spr(P). Clearly, (I +~T) 'z =
(I — P)x = (1 — \)z, and therefore

x=(1-N{I+~T)x.
Because T'x > 0, the assumption that A > 1, would lead to:
0<z=(1-Nz+~y1-NTz <(1-Nz<0.

This would imply = = 0, which is a contradiction; therefore spr(P) < 1. O

2.3.3 Special bounds with seminorms || - ||

Clearly, with the choice (2.22), the general properties (2.17), (2.18), respectively,
reduce to

Condition 0 < At < v - 7o implies that process (2.2) satisfies

the special bound (2.23), whenever V is a vector space, || - || a (2.31)
seminorm on V, and the functions F; : V — V satisfy the basic ’
assumption (2.4).

Condition 0 < At < - 7y implies that process (2.2) satisfies

the special bound (2.24), whenever V is a vector space, || - || a (2.32)
seminorm on V, and the functions F; : V — V satisfy the basic ’
assumption (2.4).

In this section we shall analyse these two special properties, and arrive at rela-
tively simple conditions on v for the properties to be present.
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But, we shall first present Theorem 2.3.4, which shows a crucial feature of
the statements (2.31), (2.32): the theorem tells us that the estimates (2.23) and
(2.24) occurring in these statements are the best possible, in the sense that,
for any v > 0, the more general properties (2.17), (2.18) cannot be valid with
smaller choices for p; and p;; than (2.22). We have

Theorem 2.3.4 (Lower bounds for y; and ;).

(I) If v > 0 and p; are such that property (2.17) holds, then p; > 3, |sq]
(for 1 <i<m).

(II) If v >0 and p; are such that property (2.18) holds, then p;; > |s;j| (for
1<i<m,1<j<1)

Proof. In order to prove statement (I), assume property (2.17) is valid with
v > 0 and p;, < 32 [8ig;| for some index ig. Then, in the situation where
V=R, ||[v]| = |v|, F; =0 and z; = sgn(s;,;), we have

132 si025]| < i - maxa<icr [l < 325181051 = |22 81055 |-

This yields a contradiction, so that (I) must be true.

To prove statement (IT), assume property (2.18) is present with v > 0 and
Wiojo < |Siojo| for some pair (ig, jo). Then, applying this property to the situ-
ation where V =R, ||v|| = |v], F; = 0, z; = sgn(s,,;) (for j = jo) and z; =0
(for j # jo), we arrive at

||8i0j0$j0” < /LiojonjOH < |3i0j0| = ||3i0j0xj0||'

This yields again a contradiction, so that statement (IT) must be true. O

Our main result about the special boundedness properties (2.31), (2.32)
will be formulated in Theorem 2.3.5. The theorem shows that criteria for these
properties are possible which are in general much simpler than the criteria, given
in Section 2.2.3, for the more general boundedness properties (2.17), (2.18).

Theorem 2.3.5 (Simplified criteria for the special properties (2.31) and (2.32)).

Consider an arbitrary generic process (2.2), and let v > 0. Then the following

propositions are valid:

(I)  Condition (2.25) is necessary and sufficient for property (2.31) as well as
for property (2.32).

(II) If S > 0, then condition (2.26) is necessary and sufficient for property
(2.31) as well as for property (2.32).

(III) If S > 0 has no row equal to zero, then the classical condition (2.10) is
necessary and sufficient for property (2.31) as well as for (2.32).

Proof. Part (I) follows from a combination of Theorem 2.2.5 and Lemma 2.3.2.

Part (II) follows from part (I) and Lemma 2.3.2.

In order to prove statement (III), assume S > 0 has no row equal to zero.
Combining part (II) of Theorem 2.3.5 and part (III) of Lemma 2.3.2, it follows
that property (2.31) as well as (2.32) is equivalent to condition (2.28). Because
S >0, the last condition is equivalent to the classical condition (2.10). O
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Property (2.32) is a-priori stronger than (2.31). Therefore the essence of the
above theorem is that conditions (2.25), (2.26) and (2.10), under the appropri-
ate assumptions on S, imply the strong statement (2.32), whereas already the
weaker statement (2.31), under the same assumptions on S, implies conditions
(2.25), (2.26) and (2.10).

2.3.4 Special bounds with general sublinear functionals
111

In this section we shall deal with bounds for ||y;||, where the functional ||-|| is not
necessarily a seminorm. The following two examples provide some motivation
for dealing with such bounds.

Example 2.3.6. Consider the functionals ||v|| = ||v||3 and ||v|| = ||v]|-~ defined
by
Joll = maxoi, (o]l = — mino; (2.33)
K3 3
for v = (v1,v9,...,v0)7 € V=RM. These two functionals are no seminorms.

But, they are highly relevant to discrete mazimum principles for actual numer-
ical processes, cf. Hundsdorfer & Verwer (2003, p. 118), Spijker (2007, p. 1235).
&

Example 2.3.7. Another useful functional which fails to be a seminorm, is
given by
||’U||0 = —min{O,vl,...,vM} (234)

for v = (vi,v2,...,oa)T € V = RM. For this non-negative functional we
have ||v]lo = 0 if and only if v > 0, where this inequality is to be interpreted
component-wise. One sees that any boundedness property max; ||yi|lo < w -
max; ||zl implies the preservation-of-nonnegativity property: y; > 0 (for 1 <
i < m) whenever all z; > 0. For the practical relevance of this property, e.g.
in the numerical solution of reaction-diffusion-convection equations, one may
consult e.g. Hundsdorfer & Verwer (2003). <&

Since the above functionals ||v||4, ||v]|—- and ||v]|o violate the seminorm con-
dition (2.16), the material of Sections 2.2.3 and 2.3.3 does not apply. It is
therefore natural to look for versions of Theorems 2.2.5, 2.3.4 and 2.3.5 which
are relevant to classes of functionals that are larger than the one specified by
(2.16). Below we shall focus on functionals || - || which are only required to be
sublinear, i.e.

[lav + Bw|| < aflv|| + B]|w]]| (for all o, 3 >0 and v, w € V). (2.35)

Note that this requirement is equivalent to ||v+w|| < |[v||+||w]], [[Av]| = A[|v]]
(for all A > 0 and v, w € V). One easily sees that the three functionals in the
above examples are sublinear.
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In line with the above, we shall study the question for which values v > 0
the process (2.2) has either of the following two general boundedness properties:

Condition 0 < At < « -7 implies the bound (2.14), whenever
V is a vector space, || - || a sublinear functional on V, and the (2.36)
functions F; : V — V satisfy the basic assumption (2.4).

Condition 0 < At < 7 - 7 implies the bound (2.15), whenever
V is a vector space, || - || a sublinear functional on V, and the (2.37)
functions F; : V — V satisfy the basic assumption (2.4).
The following theorem may be viewed as a variant of Theorem 2.3.4 tuned
to sublinear functionals. It shows, somewhat surprisingly, that we loose nothing
by focusing on bounds with the coefficients (2.22).

Theorem 2.3.8 (Expressions for p; and p;;).

(I) Ifvy >0 and p; are such that property (2.36) is present, then p; = 3_; |si]
(1<i<m)andS >0.

(II) If v > 0 and p;; are such that property (2.37) is present, then j;; = |s;j|
(1<i<m,1<j<l)andS >0.

Proof. (I) It follows from Theorem 2.3.4 that
Ej |sij| < pi (for 1 <i<m). (2.38)

Applying property (2.36) to the situation where V.= R, |[v|| = v, F;(v) =0,
and choosing successively all z; =1 and all z; = —1, we find )| ; Sij < p; and
(=22, sij) < (—p), respectively. Hence

pi =3 si; (for 1 <i<m).

Combining this equality and (2.38), we arrive at proposition (I).
(II) It follows from Theorem 2.3.4 that

> ojlsil < 325mi; (for 1.<i<m). (2.39)

Applying property (2.37) to the situation where V.= R, |[v|| = v, F;(v) = 0,
we conclude that »; s;z; = yi < >, pija; (1 < i <m), for all real values z;.
This implies

Hij = Sij (fOrlSiSm, 1§]§l>

Combining this equality and (2.39), we arrive at proposition (II). O

Theorem 2.3.8 shows that the special bounds (2.23), (2.24), respectively,
are the only bounds of type (2.14), (2.15) which make sense in the context of
general sublinear functionals || - ||. Accordingly, we shall focus on the following
special versions of the general properties (2.36) and (2.37), respectively:

Condition 0 < At < - 7y implies that process (2.2) satisfies

the special bound (2.23), whenever V is a vector space, || - || a (2.40)
sublinear functional on V, and the functions F; : V — V satisfy ‘
the basic assumption (2.4),
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Condition 0 < At < v - 7p implies that process (2.2) satisfies

the special bound (2.24), whenever V is a vector space, || - || a (2.41)
sublinear functional on V, and the functions F; : V — V satisfy ‘
the basic assumption (2.4).

Our main result about these two properties has been formulated in Theo-
rem 2.3.9. The theorem can be regarded as a neat version of Theorem 2.3.5,
parts (I) and (III), adapted to sublinear functionals.

Theorem 2.3.9 (Criteria for the properties (2.40) and (2.41)). Consider an

arbitrary generic process (2.2), and let v > 0. Then the following propositions

are valid:

(I)  Condition (2.27) is necessary and sufficient for property (2.40) as well as
for property (2.41).

(II) If S > 0 has no row equal to zero, then the classical condition (2.10) is
necessary and sufficient for property (2.40) as well as for property (2.41).

Proof. (I) We prove necessity and sufficiency of (2.27) separately.

1 (Sufficiency). It is easy to see that property (2.41) implies (2.40). There-
fore, it is enough to prove that condition (2.27) implies (2.41). The last im-
plication can be proved by almost the same arguments as used in part 1 of
the proof of Theorem 2.2.4 in Section 2.2. Note that again the inequalities
I+~T > 0and S > 0 are needed, which follow now from: I+~y7T = (I-P)~! =
I+P+P’+...>0and S=(I—-P)"'R>0.

2 (Necessity). For proving the necessity it is enough to show that (2.40)
implies (2.27). To prove this implication, we (only) assume (2.40) to hold in
the situation where

V =R"™, ||v|| = max;vl¥l (for v € V with components v!* (1 <k <m)).
We define functions F; : V. — V by
Fi(v) =75 ' (—y;j + 2) (for v=y;), Fj(v)=0 (otherwise),
where y;, z; are vectors in V - to be specified below - satisfying
Izl < sl (1 <5 <m)). (2.42)

Clearly the functions F) defined in this fashion satisfy the basic assumption
(2.4).
We consider the matrices P = (p;;), R = (r55) (cf. (2.9)) and define the

k . k
B]:—l (if re; < 0), a:g»]

zj[»k] = —1 (if py; < 0), z][-k] = 0 (otherwise). We define the vectors y; € V by
Yi = Zé’:l rijTj+3 00 pijz; (1 < i < m). Ashort calculation shows that z;, y;
satisfy the relations (2.2) with the functions F; as defined above and At = 7.

We denote by p; the sum of the absolute values of the negative entries in the
i-th row of R, and by m; the sum of the absolute values of the negative entries
in the i-th row of P. By the definition of y;, we have ||y;|| > yzm =pi+m (1<

components of z;,z; € V by z = 0 (otherwise), and



2.8. Bounds of a special form 69

i < m). Because ||z]|| < 0, the inequalities (2.42) are in force, so that the basic
assumption (2.4) is valid.
Applying property (2.40) to the situation at hand, there follows

pi + i < lyill < (2 Isig]) - maxj[|z]| <0 (1<i<m),

which proves P > 0, R > 0. The remaining inequality, spr(P) < 1, follows e.g.
by applying Theorem 2.3.5, part (I).

(IT) Let the classical condition (2.10) be fulfilled. Then (2.28) holds as well.
So, by Lemma 2.3.2, part(III), condition (2.27) is fulfilled. From part (I) (of
Theorem 2.3.9) we conclude that (2.40) and (2.41) hold.

Conversely, assume property (2.40) or (2.41). By Theorem 2.3.5, part (III),
we arrive at (2.10). O

Since property (2.41) is a-priori stronger than (2.40), the essence of the above
theorem is that conditions (2.27), (2.10) (under the appropriate assumptions
on S) imply the strong statement (2.41), whereas already the weaker statement
(2.40) implies (2.27) and (2.10)(under the same assumptions on S).

2.3.5 Various natural questions

In this section we ask and answer five natural questions about possible simpli-
fications or extensions of Lemma 2.3.2 and Theorems 2.3.5, 2.3.9. For each of
these questions we will provide counterexamples.

Question 2.3.10. Because all of the conditions (2.26), (2.27), (2.28) and (2.10)
are more simple in appearance than condition (2.25), the question arises of
whether the last condition can be replaced by any of the first four conditions in
Lemma 2.3.2 (part (I)) or in Theorem 2.3.5 (part(I)).

To answer this question, consider the generic process (2.2) with !l =2, m =1
and s1; = —2, s10 = 1, t17 = 1. Let v > 0. It is easy to see that condition
(2.25) is fulfilled. Hence, the properties (2.31) and (2.32) are present. But,
we do not have R > 0, so that the conditions (2.26), (2.27), (2.28) and (2.10)
are violated. Therefore, none of the last four conditions can replace condition
(2.25) in Lemma 2.3.2 (part (I)) or in Theorem 2.3.5 (part(I)). ad

Question 2.3.11. Because the conditions (2.27), (2.28) and (2.10) are more
simple than (2.26), the question arises of whether condition (2.26) can be re-
placed by one of the first three conditions, in Lemma 2.3.2 (part (II)) or in
Theorem 2.3.5 (part(II)).

The following counterexample proves that such a replacement is not possible.
Consider process (2.2) withl =m =1 and s1;1 =0, t17 = —1. Let v = 1/4. One
easily sees that condition (2.26) is fulfilled, so that the properties (2.31) and
(2.32) are present. But, we do not have P > 0, so that (2.27), (2.28) and (2.10)
are violated. Therefore, none of the last three conditions can replace condition
(2.26) in Lemma 2.3.2 (part (IT)) or in Theorem 2.3.5 (part(II)). ad
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Question 2.3.12. Because the classical condition (2.10) is more simple than
(2.27), the question arises of whether condition (2.27) can be replaced by (2.10)
in Theorem 2.3.9 (part(I)).

The following counterexample proves that such replacement is not possible.
Consider process (2.2) with I = m = 1 and s;; = 0, 17 = —1. Let v = 2.
One easily sees that condition (2.27) is violated, so that the properties (2.40)
and (2.41) are not present. But (2.10) is fulfilled. Therefore, condition (2.10)
cannot replace (2.27) in Theorem 2.3.9 (part(I)). a

Question 2.3.13. One may ask whether the condition S > 0 can be omitted
in Theorem 2.3.5 (part(III)) or in Theorem 2.3.9 (part(II)).

To answer this question, consider process (2.2) withl = m = 1 and s1; = —1,
t11 = —1. Let v = 2. It is easy to see that condition (2.10) is fulfilled, but not
(2.25) or (2.27). Hence, all of the special boundedness properties (2.31), (2.32),
(2.40) and (2.41) are not present. Therefore, the condition S > 0 cannot be
omitted in Theorem 2.3.5 (part(III)) or in Theorem 2.3.9 (part(II)). ad

Question 2.3.14. Finally, we consider the question of whether the condition
of S having no row equal to zero, can be omitted in Theorem 2.3.9 (part(II)).
A negative answer to this question easily follows from the counterexample used
above in resolving Question 2.3.12. ]

2.4 Applications of the theory

2.4.1 Preliminaries

Below we shall illustrate the preceding theory by applying it to some well-known
numerical methods. In these applications, we will restrict ourselves, for ease of
representation, to autonomous problems, i.e. F' in the initial value problem (2.1)
is independent of t. Accordingly, in the generic process (2.2), we assume F; = F
, and the basic assumption (2.4) takes the form

o+ 70 F()|| < [lvl| (for all v € V), (243)

In Section 2.4.2 we shall deal with the two-step (k = 2) Adams-Bashforth
LMM and in Section 2.4.3 with a class of k-step 2-stage methods. All of
these methods generate vectors u, € V (for n > k) from starting vectors
ug, - - -, up—1 € V, where u,, = u(n - At) and k is fixed. We call a k-step method
bounded with factor p (for given stepsize At, vector space V, functional || -|| and
function F) if

< - ; <n<k-— .
lunll < - maxe Jlugl| - (b <n<k-1+DN), (2.44)
whenever N > 1 and u,, € V (k < n < k—1+ N) are generated from any
ug,...,up—1 € V by N successive applications of the method. Boundedness
with factor p = 1 will be referred to as monotonicity of the method.
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We recall that boundedness and monotonicity with the so-called total vari-
ation seminorm (defined by ||z|| = ||z||7v = >, &1 — & for vectors x with
components ;) correspond to the important concepts total variation bounded
and total variation diminishing, respectively, cf. e.g. Hundsdorfer & Verwer
(2003), LeVeque (2002).

In the following we shall focus on the situation where the functional |- || is a
seminorm. We shall consider stepsize-coefficients v > 0 and factors p such that

Condition 0 < At < 7 - 79 implies boundedness with factor u,
whenever V is a vector space with seminorm |||, and F : V — 'V (2.45)
satisfies the basic assumption (2.43).

In case v, u satisfy (2.45), we will say that v is a stepsize-coefficient for bound-
edness of the method with factor u; in case v satisfies (2.45) with g = 1, we will
call it a stepsize-coefficient for monotonicity. Below we shall look for stepsize-
coefficients v with property (2.45) by considering representations (2.2) of N
consecutive steps of the method under consideration.

2.4.2 The two-step Adams-Bashforth method
The well-known 2-step Adams-Bashforth method reads

Uy = Up_1 + AL [%F(un_l) — %F(Un_z)}; (2.46)

it yields numerical approximations u,, ~ u(nat) (n = 2,3,...), starting from ug
and u; & u(At). In this section we shall look at the relevance of Theorems 2.2.2,
2.2.4,2.3.5, 2.3.9 to this method, thereby representing N consecutive numerical
steps in two different ways as a process of type (2.2).

In order to describe our first (and most natural) representation, we put
=2, m=N+2and z1 = up, v2 = u1, y; = ui—1 (1 <i < m). Clearly, the
equalities (2.46) hold for 2 < n < N + 1 if and only if

Y1 = T,
Y2 = 2, (2.47)
yi =5 — SAF(y) + ALY S F(y;) + 3atF(yia) (3<i<m).

These relations are equivalent to the relations in (2.2), with coefficients s;;, ;
defined by:

0
10 0 0
0 1 -+ 3 0
(sif)=S=1|. |, @)=T=| 7 2
o -5 1 2 0
0 1 : E
-3 1 1 2 0
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With these definitions, the equalities (2.46) (for 2 < n < N + 1) thus hold if
and only if (2.2) is fulfilled.

For the matrix 7" at hand, we see that I + ~T is invertible for all v > 0.
Furthermore, because the preconsistency condition (2.5) is fulfilled, one might
hope to be able to prove the monotonicity property (2.7) and its variant (2.12),
for some v > 0, by applying Theorems 2.2.2 and 2.2.4. If this were possible,
such a v would be a stepsize-coefficient for monotonicity in the sense specified
in Section 2.4.1.

However, a short calculation shows that the matrix P = (I +~7)~1(yT) has
a negative entry (for any v > 0 and all N > 1), so that we cannot conclude, by
applying the Theorems 2.2.2, 2.2.4, that there is 7 > 0 for which the properties
(2.7), (2.12) hold. Similarly, Theorems 2.3.5, 2.3.9 cannot be applied here so
as to arrive at the boundedness property (2.45) with positive . The following
negative statement can be proved, e.g. by applying the material in Spijker (1983,
Theorem 3.3):

Proposition 2.4.1. For the two-step Adams-Bashforth method (2.46) there
exists no positive stepsize-coefficient v for monotonicity.

In spite of this statement, we will see below that a positive stepsize-coefficient
for boundedness can be determined by applying Theorem 2.3.5 and representing
the equalities (2.46) (for 2 < n < N + 1) in the generic form (2.2) with less
obvious matrices .S, T' than used above.

We consider the representation in the generic form (2.2), with | = 2, m =
N, y; = u;r1 (1 <i <m) and input vectors

r1 = uy + %AtF(ul) — %AtF(UO), To = —%AtF(ul).
Clearly, the equalities (2.46) (for 2 < n < N + 1) amount to
Y1 = T,

yi = o1+ 2 + MY TF(y;) + SAtF(yi)  (2<i<m).

(2.48)

The first IV steps of the Adams-Bashforth method can thus be represented by
the generic process (2.2), with [ =2, m = N and

0
10 5
11 2
(sij)=8=1. .|, (y=T=]1 5 0 (2.49)
11
1 - 1 30

Note that this matrix S violates the preconsistency condition (2.5), so that
the monotonicity theory of Section 2.2.2 is not relevant here. But, the special
boundedness theory of Section 2.3 still applies.



2.4. Applications of the theory 73

To be able to apply Theorem 2.3.5, we shall determine expressions for P
and R corresponding to S, T" just defined. A short calculation shows that
do
e N
dqm-1 "'+ 41 4o

where ¢o = 1, g1 = —%"y and ¢; = (1— %"/)qi,l + %’y qi—o for ¢ > 2. It follows
that

To 0 0
N N
Tm—1 Tm—2 Gm-1 -+ q 0

where 7; = qo + q1 + - - - + ¢q;- Using the recurrence relation satisfied by ¢;, one
finds for 0 < v < % and ¢ > 1 that ¢; <Oand v-r, = —[(1—7)¢ + %qi,l] > 0.
Hence, the classical condition (2.10) is fulfilled for any v € (0, 3]. In the rest of
this section we assume v = %.

From proposition (III) of Theorem 2.3.5, we conclude that the generic pro-
cess (2.2) (with coefficients given by (2.49)) has the special boundedness prop-
erty (2.32). Using this property and the definition of z1, x5 in force, it follows
that condition 0 < At < - 79 implies:

lunll < llur + 3at F(uy) — 2at Fuo)|| + || — 2t F(uy)] (2.50)

for 2 <n < N+ 1, whenever u,, is generated by applying the Adams-Bashforth
method under the basic assumption (2.43). Here || - || stands for an arbitrary
seminorm on the vector space V.

For 0 < At < -7 and any seminorm || - ||, we have

[atF()]| = (at/mo)l| —v+ (v + 1 F(v))] < 2v[v],
which can be seen to imply
lur + Sat Fur) = at Fuo)|l < fuall +vluoll;
hence,
s + 5 ALF (ur) = gALF (uo) | + || = 38¢F (wr)|| < (14)ual| + ylluol|- (2.51)

Combining this inequality with the above bound for |Ju,|, we arrive at the
following:

Proposition 2.4.2. For the two-step Adams-Bashforth method (2.46), the step-
size condition 0 < At < %7’0 implies boundedness with factor = 17/9, when-
ever V is a vector space with seminorm || - ||, and F : V — V satisfies the basic
assumption (2.43).



74 Chapter 2. Special boundedness properties in numerical initial value problems

By applying Theorem 2.3.9, instead of Theorem 2.3.5, we find similarly as
above that the bound (2.50) is valid under the basic assumption (2.43), when
[| - || is an arbitrary sublinear functional on the vector space V. But, in the
general situation of sublinear functionals, we cannot derive similarly as above
that the inequality (2.51) is valid.

To give a simple illustration of the estimate (2.50), with a sublinear func-
tional ||-|| which is no seminorm, we consider V = RM with functional ||-|| = |||
(given by (2.34)). Applying Theorem 2.3.9 to the situation at hand, and defining
v > 0 by nonnegativity of all components of v € V| yields:

Proposition 2.4.3. Consider the two-step Adams-Bashforth method (2.46) in
the situation where V.=RM and ||-|| = || ||o (see (2.34)). Assume F :V —V
satisfies the basic assumption (2.43). Then the stepsize condition 0 < At < %7’0
implies that

up >0 (2<n<N+1),

whenever u,, is obtained from wg, ui with uy + %At F(uy) > %At F(up) and

We note that there exists no positive stepsize-coefficient ~, such that the
inequalities u, > 0 are valid for 0 < At < - 79, under the more natural
assumption that

up >0, up >0 and v+ 7 F(v) >0 (forallvERMwithsz).

This can be seen, for example, by considering V. =R, F(v) = v and up = 1,
Uy = 0.

2.4.3 Predictor-corrector methods and hybrid multistep
methods

Notations

Using an explicit linear multistep method (LMM), with coefficients a;, IA)j, as a
predictor for an implicit LMM, with coeflicients a;, b;, results in a numerical
process of type

k k

Uy = Zdjun,j + AtZIA)jF(un,j) , (252&)
Jj=1 Jj=1
k k

Uy = Zajun_j + AthjF(un_j) + At b()F(’Un) , (2521:))
j=1 j=1

where k > 1 1is fixed and n = k, k + 1,..., cf. e.g. Butcher (2003), Hairer,
Norsett & Wanner (1993), Huang (2009). The starting values for this method
are ug, Uy, ..., U1 € V.
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Throughout this section we assume by > 0, Z?:l a; =1, Z?:l a; =1, as

well as zero-stability, i.e. all roots of the equation & = Ek

modulus |£] < 1, and the roots with [£| = 1 are simple. =

Methods of type (2.52) are called predictor-corrector methods if u,, and vy,
respectively, are final and tentative approximations to the solution at ¢, =
nAt. If a predictor (2.52a) corresponds to a method with order of accuracy
k, and a corrector (2.52b) to a method with order k + 1, then the predictor-
corrector method (2.52) has order k+ 1. The most popular schemes of this type
are obtained by combining the explicit Adams-Bashforth and implicit Adams-
Moulton methods, cf. the literature mentioned above.

The formulas (2.52) can also stand for so-called hybrid multistep methods,
also known as modified linear multistep methods, where v,, approximates the
solution at a point ¢, = (n — k)At, with an extra parameter x # 0; cf. the above
literature.

We shall represent N > 1 steps of the general method (2.52) as a process of
type (2.2), were y = [y;] € V™, m = 2N, with

o
a;¢" 7 have a

Yi = Uk—144i, YN+i = Uk—1+i for 1<i<N. (2.53)
For the input vector we take z = [z;] € V!, | = 2k, defined by

k k
€T, = Zajuk,lﬂ-,j + AthjF(uk,1+i,j) (]. <1< k), (254&)
j=i J=t
k k R
Titk = Z&juk_“_i_j + AthjF(uk_H_i_j) (1 <1< k) (2541:))
Jj=t J=i

To write the relations (2.52), (2.53) specifying y1, y2,. .., Ym i a compact
way, we give the following definitions. For any m x r matrix S = (s;;) we
denote by the boldface symbol S the corresponding linear map from V" to
V™ | that is, y = Sx if y; = E; 1525 € V(1 <4 < m). Let I be the
N x N identity matrix. Let Jy € RY** be the matrix that consists of either
the first N rows of the k x k identity matrix (when 1 < N < k), or the first
k columns of I (when N > k). Furthermore, let Ay € RY*YN be the lower
triangular Toeplitz matrix with diagonal entries 0, entries a; on the j-th lower
diagonal (1 < j < mln{k N — 1}) and with the remaining entries 0 again.
The matrices By, Ao, By € RV*N are defined likewise with coefficients b;, d;, b;
(1 <j < min{k, N —1}), respectively (the coefficient by does not enter into the
matrix Byp).

It is easy to see that the relations (2.52) (for ¥ < n < k -1+ N) are
equivalent to

y=Jx+ Ay + AtBF(y), (2.55)

where F(y) = [F(y;)] € V™, and J € R™*! A, B € R™*™ are given by

J:<J°0>, :<‘i‘° O>, B:(?O "01). (2.56)
0 Jo Ay O By, O
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The generic form (2.2) is thus obtained with coefficient matrices (s;;) = S =
(I—A)"'Jand (t;;) =T =(I—-A)'B.

Monotonicity for predictor-corrector methods and hybrid multistep
methods

Let us first take a brief look at standard monotonicity with respect to the
starting vectors uo, ..., ug—1. For this, it is convenient to introduce a; = a; —

ybod; and b; = bj — ybob; (for j =1,...,k). The relations (2.52) imply that

k k

Uy = Z ajtUn—j + AtZBjF(un_j) + 'ybo(vn + ATtF(vn)) .
j=1 j=1

By combining this equality with (2.52a), we arrive at the following theorem; see
also e.g. Gottlieb, Shu & Tadmor (2001), Huang (2009), Spijker (2007).

Theorem 2.4.4. Consider method (2.52) withn =k, k+1,...,k—1+ N. Let
[| - || be a convex functional on the vector space V, and assume F : V — V
satisfies the basic assumption (2.43). Let v > 0 be such that

a; >b; >0, a;>4b; >0  (j=1,....k). (2.57)
Then the stepsize restriction 0 < At < v - 19 implies that
< ; <n<k-— . .
Junll < max gl (E<n<k-1+N) (2.58)

Note that, under a weak irreducibility assumption, condition (2.57) is not
only sufficient but also necessary for the above bound (2.58), see Spijker (2007).

However, the methods (2.52) with coefficients satisfying condition (2.57)
(with v > 0) form a small class, excluding popular schemes, for instance ob-
tained by combining explicit and implicit Adams-type methods as indicated
above. Furthermore, in view of results for LMMs of Ruuth & Hundsdorfer
(2005), one can expect that the stepsize requirement At < ~ -7 (with v such
that (2.57) holds) may be unnecessarily restrictive if v is only required to be a
stepsize-coeflicient for boundedness (in the sense of Section 2.4.1).

Below we apply the theory of Section 2.3 in an analysis of the methods (2.52)
which is also relevant in cases where condition (2.57) is violated.

Special bounds for predictor-corrector methods and hybrid multistep
methods

Below we shall look for stepsize-coefficients for boundedness using the represen-
tation of (2.52) in the generic form (2.2) with the matrices S, T specified in
Section 2.4.3.

For this T, the matrix I 4+ ~«T is invertible for all v > 0. To prove this, we
consider the alternative ordering

Y21 = Uk—144, Y2i = Uk—1+i (1 <i < N), (2.59)
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which yields a representation of type (2.55) with strictly lower triangular ma-
trices, say, A, B. The corresponding matrix T = (I — A)~!B is also strictly
lower triangular. With our original ordering, viz. (2.53), we thus have a matrix
T = VIV~!, where V is a permutation matrix, and therefore I + T is in-
vertible. To derive boundedness results it will be convenient to use the original
ordering (2.53).

Substituting the expressions for S and T (given at the end of Section 2.4.3)
into the definition (2.9) of P and R, we arrive at

R=KJ, P=+KB, K= (I-A+~+B)™". (2.60)

Because P = VPV ™! with P = yT(I +~vT)~! and spr(P) = 0, we have also
spr(P) = 0.

Let KO = (I — AO —|—’yB0)_l, AO = AO —’}/bofio, BO = BO — ’}/b()Bo. It can be
seen that

—1 . .
K- < I'—Ag+7Boy ~bol ) _ < Ko —7bo Ko )
—Ao+vBo I (Ao —vBo)Ko (I — Ao +vBo)Ko

This gives

R = ( KoJo —7bo Koo ) (2.61)
(Ao —vBo) KoJo (I — Ao +vBo) KoJo

Using the fact that lower triangular Toeplitz matrices commute, it is found that

P =~ ( (Bo — vboBo) Ko bo Ko ) . (2.62)
(I —Ao)Bo + AgBo) Ko bo(Ag — vBo) Ko

S — (I — Ao)_1J0 O '

Ag(I = Ag) ™o Jo
By considering the upper-right blocks of R, P, S and PS, |P|S it can be seen
that none of conditions (2.25)—(2.28) is fulfilled (for any v > 0 and all N > 1).
Hence, Theorem 2.3.5 cannot be applied here directly so as to arrive at property
(2.45) with positive v. However, we shall see below that a positive stepsize-
coefficient for boundedness can be found by modifying the matrix .S and applying
Theorem 2.3.9.

We have

Let
T =x; — YboTivk s, Tivk = Titk for i=1,...,k. (2.63)
~ . I ’Yb()[ .
Thenz =V 2 with V = o . Below we shall deal with process (2.55)

written in the equivalent form

y= 8%+ atTF(y), (2.64)
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where S = (3,;) = (I — A)~'JV = SV. Defining R = (I +yT)'S (cf. (2.9))
we get in view of (2.60)

R=KJV = ( - Koo 0 ) (2.65)
(Ao —vBo) KoJo  Jo

We now have R > 0 (for all N > 1) whenever
P>0  (foral N >1). (2.66)

This leads directly to the following result.

Lemma 2.4.5. Consider N consecutive steps of method (2.52) written in the
form (2.64). Let || - || be a sublinear functional on the vector space V. Assume
F :V — V satisfies the basic assumption (2.43) and v > 0 is such that (2.66)
holds. Then the stepsize restriction 0 < At < - 19 implies that the output
vectors y; defined by (2.53) satisfy

A< s - T < i<
lyill < fi [max, IZ;[|  (1<i<2N),

with fi; = 3, 541
Proof. To prove this lemma, we apply part (I) of Theorem 2.3.9 with S replaced
by S. O

Consider ji = max; fi; = ||S||oo. Using the definition (2.56) and the expres-
sion (2.65), there follows after a little calculation that

5, _ 1 ’yboj S() O
Ay I- A4, 0 S/

with So = (I — Ag)~*Jo. We find that 7 < [|(I — Ao) ' Jollec - max {1 +
vbo, 1 + Z?:l (laj| + |a;])}. Due to the assumption of zero-stability we have
supn>1 [|Solle < 00, so that ji can be bounded, uniformly with respect to N.

Consider v > 0 such that (2.66) holds and let 0 < At < v - 7y. Then from
Lemma 2.4.5 and (2.54), (2.63), it follows that

k k
[ Sﬂ'maX{ (la; = b;| + 1b1), (|&j—“/bj|+|’ybj|)} g dnax |yl
. N <j<k-—1
Jj=1 j=1
for k <n < k—1+ N, whenever u,, is generated from ug,...,ux—1 € V by
applying method (2.52) under the basic assumption (2.43), where || - || is a

seminorm on the vector space V. Thus we arrive at the following theorem.

Theorem 2.4.6. Assume v > 0 is such that P > 0 (for all N > 1). Then ~y
is a stepsize-coefficient for boundedness of the method (2.52) (in the sense of
Section 2.4.1).
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Results for third order explicit two-step methods of the form (2.52)

In this section we study method (2.52) with k = 2, u, ~ u(nat), v, =~
u((n — k)At). Requiring order p = 3 leaves 3 free parameters a1, a1, £ and
the remaining coefficients can be computed by the formulas: as = 1 — aq,
bo = (44 a1)/(6(1 — K)(2—K)), b1 = (8 —12k — (4 — 3K)a1)/(6(1 — K)),
by = (4 — (5—38)a1)/(6(2 - K)), a2 = 1 —ay, by = 2 — 8 — 25 4 £
by = —% + K- %2 The method is zero-stable if and only if a; € [0, 2).

For these methods we will compute the maximal values of v such that P > 0
for N =1,...,1000; it was verified that with larger N the results did not differ
anymore noticeably.

First we study the methods with x = 0, corresponding to the classical
two-step predictor-corrector methods. The result is shown in the left panel
of Figure 2.1. We note that there are no methods in this class for which the
monotonicity condition (2.57) holds with v > 0. The displayed values of ~ for
boundedness with these predictor-corrector methods are rather low; the maxi-
mal value is approximately 0.36, corresponding to a; ~ 0.765, a; ~ 1.673.

0.2 0.4 0.6 a]O.S 1 12 14 0.2 0.4 0.6 a]O.S 1 12 14
FIGURE 2.1: Maximal values v > 0 such that P > 0 for the methods (2.52) with
k = 2 of order p = 3, with parameters a; € [0, 1.5] horizontally and a; € [—0.1,1.95]
vertically. Left panel: standard predictor-corrector methods, x = 0. Right panel:
hybrid methods with k = 1 — %\/5 Contour levels at j/20, j =0, 1,...; for the ‘white’
areas, there is no positive 7.

A numerical search revealed that larger values of v can be found by allowing
k # 0. The right panel of Figure 2.1 shows the values of v with kK =1 — %\/5 .
The largest v ~ 0.73 is found with a; =~ 0.392, 4; =~ 0.667 and this 7 is optimal
within the whole class (2.52) with £k =2, p = 3.

Rather surprisingly, this method coincides with the method found in Spi-
jker (2007, Section 3.2.3) which is optimal with respect to the monotonicity
condition (2.57). The latter method corresponds to a; = 6v/3 — 10, a; = 2.
These parameters coincide (up to four decimal digits) with the values for aj,
a1 obtained numerically by our search using condition (2.66), corresponding to
the right panel in Figure 2.1. In fact, if a; < % the monotonicity condition
(2.57) seems to give the same 7 as the boundedness condition (2.66). If a; > 2
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then the method has some negative coefficient, so then there is no positive ~
for monotonicity with arbitrary starting values. But, as shown by Figure 2.1,
for such a; we can still have positive stepsize-coefficients v for boundedness.



Chapter 3

Stepsize Restrictions for
Boundedness and Monotonicity of
Multistep Methods

In this chapter nonlinear monotonicity and boundedness properties are analyzed
for linear multistep methods. We focus on methods which satisfy a weaker
boundedness condition than strict monotonicity for arbitrary starting values.
In this way, many linear multistep methods of practical interest are included
in the theory. Moreover, it will be shown that for such methods monotonicity
can still be valid with suitable Runge-Kutta starting procedures. Restrictions
on the stepsizes are derived that are not only sufficient but also necessary for
these boundedness and monotonicity properties.

3.1 Introduction

3.1.1 Monotonicity assumptions

In this chapter we consider initial value problems for systems of ordinary dif-
ferential equations (ODEs) on a vector space V, written as

W(t)=F(u(t)) (t=0),  u(0)=uo, (3.1)

with F' : V — V and uy € V given. Let || - || be a norm or seminorm on V. In
the following it is assumed that there is a constant 7o > 0 such that

o+ 1F@)|| < |[v] forallveV. (3:2)

Assumption (3.2) implies |[v + At F(v)|| < [jv| for all At € (0,79]. Con-
sequently, when applying the forward Euler method u,, = u,—1 + At F(up—1),
n > 1, with stepsize At > 0 to compute approximations u, =~ u(t,) at t, = nAt,
we have

[[unll < luol (3-3)
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for all n > 1 under the stepsize restriction At < 7y. For general one-step meth-
ods, property (3.3) under a stepsize restriction At < ¢7p, with some constant
¢ > 0, is often referred to as monotonicity or strong stability preservation (SSP).

Useful and well-known examples for (3.2) involve v = (vq,...,vp)7 €V =
RM with the maximum norm ||v||o, = max;<j<u |v;] or the total variation semi-
norm ||v,., = Zﬁl |vj—1 — v;| (with vo = vas), arising from one-dimensional
partial differential equations (PDEs), see for instance Gottlieb, Ketcheson &
Shu (2009), Hundsdorfer & Verwer (2003), LeVeque (2002).

Some of the results in this chapter will be formulated with sublinear func-
tionals instead of seminorms.! This makes it possible to take, for example,
maximum principles into consideration as in Spijker (2007), by requiring that
(3.2) holds for the functionals ||v||+ = max; v; and |jv||- = —min;v;. Another
example, from Chapter 2, is ||v][o = — min{0, v1,...,vp}, by which preserva-
tion of nonnegativity can be included in the theory. We note that this last
sublinear functional is nonnegative, that is, |[v| > 0 for all v € RM.

3.1.2 Monotonicity and boundedness for linear multistep
methods

To solve (3.1) numerically we consider multistep methods. We will be primarily
concerned with linear k-step methods, where the approximations u,, ~ u(t,) at
the points t,, = nAt are computed by

k k
Uy = Z AjUn—j + At Z bjF(un,j) (34)
j=1 §=0
for n > k. The starting values for this multistep recursion, ug, u1,...,ux—1 € V,

are supposed to be given, or computed by a Runge-Kutta method.
It will be assumed throughout this chapter that

k k k
Zajzl, Zjajzz:bj, bQZO (35)
j=1 j=1 Jj=0

The two equalities in (3.5) are the conditions for consistency of order one. The

assumption by > 0 will be convenient; it holds for all well-known implicit meth-

ods, and, of course, also for any explicit method.
Suppose that all aj,b; > 0, and for such a method let

min & ,

1<j<k b;

(3.6)

with convention a/0 = 400 if @ > 0. From (3.2) it can then be shown that

luall < masx, s (37)

IRecall that ¢ : V — R is called a sublinear functional if ¢(v + w) < p(v) + ¢(w) and
p(cv) = cp(v) for all real ¢ > 0 and v,w € V. It is a seminorm if we have in addition
@(—v) = ¢(v) > 0 for all v € V. If it also holds that ¢(v) = 0 only if v = 0, then ¢ is a norm.
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for n > k, under the stepsize restriction At < ¢7g; see e.g. Gottlieb, Ketcheson
& Shu (2009), Spijker (2007). This property can be viewed as an extension of
(3.3) for multistep methods with arbitrary starting values.

Results of this type for nonlinear problems were derived originally in Shu
(1988) with the total variation seminorm, and (3.7) with this seminorm is known
as the TVD (total variation diminishing) property. More recently, with arbi-
trary seminorms or more general convex functionals, the term SSP (strong sta-
bility preserving) —introduced in Gottlieb, Shu & Tadmor (2001) — has become
popular. Related work for nonlinear problems was done in Lenferink (1991),
Sand (1986), Vanselov (1983) for contractivity, where one considers ||t, — ||
with differences of two numerical solutions instead of |uy,|| as in (3.7). Finally
we mention that related results on nonnegativity preservation and contractiv-
ity or monotonicity for linear problems can be found e.g. in Bolley & Crouzeix
(1978), Ketcheson (2009), Lenferin (1989) and Spijker (1983), again primarily
for methods with all a;,b; > 0 and with At < c 7.

In order to conclude (3.7) from (3.2) for arbitrary (semi-)norms or sublinear
functionals, the condition that all a;,b; > 0 and At < c g is necessary. In fact,
this condition is already needed if we only consider maximum norms instead of
arbitrary (semi-)norms; see Spijker (2007).

The methods with nonnegative coefficients form only a small class, excluding
the well-known methods of the Adams or BDF-type, and the stepsize require-
ment At < ¢7g (within this class) can be very restrictive. For instance, as shown
in Lenferink (1989), for an explicit k-step method (k> 1) of order p we have
¢ < (k—=p)/(k—=1). Most explicit methods used in practice have p = k, and
for such methods we cannot have ¢ > 0. It is therefore of interest to study
properties that are more relaxed than (3.7).

Instead of (3.7), we will consider

lunll < 4 mmax u;| (3-8)
for n > k, under the stepsize restriction At < 7, where the stepsize coeflicient
v > 0 and the factor © > 1 are determined by the multistep method. With the
total variation seminorm this is known as the TVB (total variation boundedness)
property.

Sufficient conditions were derived in Hundsdorfer & Ruuth (2006), Hunds-
dorfer, Ruuth & Spiteri (2003) for (3.8) to be valid with arbitrary seminorms
under assumption (3.2) and At < 7. The sufficient conditions of those pa-
pers are not very transparent and not easy to verify for given methods. In the
present chapter we will use the general framework of Chapter 1 to obtain more
simple conditions for boundedness, and these conditions are not only sufficient
but also necessary.

In practice, the starting values are not arbitrary, of course. From a given
ug, the vectors uj,...,ur—_1 can be computed by a Runge-Kutta method. For
such combinations of linear multistep methods and Runge-Kutta starting proce-
dures we will study the monotonicity property (3.3) under a stepsize restriction
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At < y719. By writing the total scheme in a special Runge-Kutta form we will
obtain sharp stepsize conditions for this type of monotonicity. This gives a gen-
eralization of earlier, partial results in this direction obtained in Hundsdorfer,
Ruuth & Spiteri (2003) for some explicit two-step methods.

3.1.3 Outline of the chapter

To illustrate the relevance of the results we first present in Section 3.2 a nu-
merical example with two simple two-step methods applied to a semi-discrete
advection equation. The coefficients aj,b; of the two methods are close to
each other, but the behaviour of the methods with respect to boundedness and
monotonicity turns out to be very different.

In Section 3.3 some notations are introduced, together with a formulation
of the linear multistep method (3.4) that is suited for application of the general
boundedness results of Chapter 1.

The main results are presented in Section 3.4. Using the framework of
Chapter 1, we will obtain necessary and sufficient conditions for boundedness.
These conditions are relatively transparent and easy to verify numerically for
given classes of methods. We will also give conditions that ensure monotonicity
—as in (3.3) - for combinations of linear multistep methods and Runge-Kutta
starting procedures.

Section 3.5 contains some technical derivations and the proofs of the main
theorems on boundedness. We will see that, for all methods of practical interest,
the stepsize coefficients v for boundedness are completely determined by partic-
ular properties of the method when applied to the test equation u'(t) = Au(t)
with At A = —~.

For some classes of methods, with two free parameters, we will present and
discuss in Section 3.6 the maximal stepsize coefficients ~ for either boundedness
or monotonicity with some specific starting procedures.

Finally, Section 3.7 contains a few concluding remarks, putting our results
in a somewhat wider perspective and addressing briefly the possibility of ana-
loguous results for variants of the linear multistep methods (3.4).

Along with the usual typographical symbol O to indicate the end of a proof,
we will use in this chapter also the symbol & to mark the end of examples or
remarks.

3.2 A numerical illustration
To illustrate the relevance of our monotonicity and boundedness concepts, we
consider two-step methods of the form

Un = 21— FUn-o + A BF (up_1) + AL (3 = B)F (un—2).  (3.9)

We take two methods within this class: = 0.95 and $ = 1.05. Both methods
have order one. Moreover the error constants are very similar, and so are
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15 15

FIGURE 3.1: Stability regions of the two-step methods (3.9) with 8 = 0.95 (left),
B = 1.05 (right). For comparison, the circle {¢ € C: |¢ + 1| = 1} is displayed by the
dashed curve.

the linear stability regions, as shown in Figure 3.1. However, as we will see
shortly, these two methods have a very different monotonicity and boundedness
behaviour.

Note that for both methods we have as < 0 and by < 0. Therefore the
monotonicity property (3.7) with arbitrary starting vectors and seminorms does
not apply. Instead of an arbitrary w; we consider the forward Euler starting
procedure u; = ug + AtF(ug). The combination of the two-step methods with
forward Euler may give a scheme for which the monotonicity property (3.3) is
valid.

Monotonicity and boundedness properties are of importance for problems
with non-smooth solutions. Such ODE problems often arise from conservation
laws with shocks or advection dominated PDEs with steep gradients, after suit-
able spatial discretization.

A simple illustration is provided by the one-dimensional linear advection
equation

%u(x,t)—l—%u(x,t)zo for t>0 and 0 <2z <1

with periodic boundary conditions. The initial profile is chosen as a block-
function: w(z,0) = 1if 0.4 < 2 < 0.6, and u(x,0) = 0 otherwise. The spatial
discretization is taken on a uniform grid with mesh width Az = 1/200, using
a standard flux-limited scheme —the so-called Koren limiter — giving a semi-
discrete system of ODEs for which the monotonicity assumption (3.2) is satisfied
for o = %Ax in the maximum norm and the total variation seminorm; see for
instance Hundsdorfer & Verwer (2003, Sect. IIL.1).

Subsequently, the resulting nonlinear semi-discrete system is integrated in
time with the above two methods and Courant number At/Az equal to 1/3.
The first approximation u; is computed by the forward Euler method.
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FIGURE 3.2: Numerical solutions at 7' = 1 and 7' = 2 for the two-step methods
(3.9) with 8 = 1.05 (dashed), 8 = 0.95 (solid lines).
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FIGURE 3.3: Values of ||un||py (left) and |lun]||oo (right) for T'=1,2,...,5 and the
two-step methods (3.9) with 8 = 1.05 (dashed), 8 = 0.95 (solid lines).

The numerical solutions for the two schemes are shown in Figure 3.2, with
spatial component z horizontally, for the output times ¢t = T with T = 1,2.
The behaviour of the two schemes is seen to be very different. Whereas we get
a nice monotonic behaviour for § = 1.05, the scheme with g = 0.95 produces
large oscillations.

The oscillations with 8 = 0.95 become more and more pronounced for in-
creasing time. The evolution of the total variation and maximum norm of wuy
(N =T/At) is shown in Figure 3.3, revealing an exponential growth. On the
other hand, for the scheme with 5 = 1.05 these values are constant: ||uy|., = 2,
lun]loo = 1. A similar behaviour can also be observed if T is held fixed, say
T =1, and the At, Ax are decreased while keeping the Courant number At/Ax
fixed. Apparently the boundedness property (3.8) is not satisfied here for the
scheme with 0 = 0.95.

With the results of this chapter the different behaviour of these two closely
related schemes can be explained. As we will see in Section 3.6.1, to satisfy the
boundedness property (3.8) or the monotonicity property (3.3) with forward
Euler starting procedure, the method with g = 1.05 allows much larger stepsizes
than the method with 5 = 0.95.
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3.3 Notations and input-output formulations

3.3.1 Some notations

For any given m > 1 we will denote by ej,es,..., e, the unit basis vectors
in R™, that is, the j-th element of e; equals one if ¢ = j and zero otherwise.
Furthermore, e = e; + €3 + - -+ + e, is the vector in R with all components
equal to one. The m x m identity matrix is denoted by I. If it is necessary to
specify the dimension we will use the notations egm], el™ and 1" for these unit
vectors and the identity matrix I.

Let E = [ea, ..., €m, 0] be the m x m backward shift matrix,
0
1 0
E=|" e R™*™, (3.10)
1 0
and define
k _ k _
A=>"aqE, B=) bE, (3.11)
j=1 §=0

where E° = I. These A,B € R™*™ are lower triangular Toeplitz matrices
containing the coefficients of the method (3.4). For m > k we also introduce
J = le1,...,ex] € R™*F containing the first k columns of the identity matrix
I. To make the notations fitting for any m > 1, we define J = [e1,..., e, O]
for 1 <m < k, with O being the m x (kK — m) zero matrix.

For any m x | matrix K = (k;;) we denote by the boldface symbol K the
associated linear mapping from V! to V™, that is, y = Kz for y = [y;] € V™,
v =[r] € Vlify; = 22:1 kijz; € V(1 <i<m). (Incase V=RM with
M > 1, then K is the Kronecker product of K with I[M].) Furthermore, the
m x | matrix with entries |k;;| will be denoted by |K|, and we define || K|/ =
max; Ej |I<Lij|.

Inequalities for vectors or matrices are to be understood component-wise.
In particular, we will use the notation K > 0 when all entries x;; of this matrix
are nonnegative.

3.3.2 Formulations with input vectors

In order to apply the theory obtained in Chapter 1, we will formulate the
multistep scheme (3.4) in terms of input and output vectors. The output vectors
of the scheme are y,, = ug_14n, n > 1. The starting values ug, u1, ..., up—1 will
enter the scheme in the first k& steps in the combinations

k k

xr; = Zajuk,prl,j + AthjF(uk,Hl,j) (1<I<k). (3.12)
=1 =l
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The multistep scheme (3.4) then can be written as

n—1 n—1
Yn = Tp+ Z ajYn—j + AthjF(yn,j) (1<n<k), (3.13a)
j=1 7=0
k k
Yn = D @Yy ALY biF(ya—y)  (n>k), (3.13b)
j=1 j=0
where the starting values are contained within the source terms in the first k
steps. We will refer to the vectors x1,...,xr € V as the input vectors for the
scheme.

To obtain a convenient notation, we consider m steps of the multistep
scheme, m > 1, leading to (3.13) with n = 1,2,...,m. Let y = [y;] € V™,
x = [r;] € V¥ and define F(y) = [F(y;)] € V™. We can now write the resulting
scheme in a compact way as

y = Jx+ Ay + At BF(y). (3.14)

To study boundedness, the number of steps m is allowed to be arbitrarily
large. Consider, for given vector space V and seminorm || - ||, the boundedness

property

max ||yn|| < p- max ||z;|| whenever (3.2) is valid, At < y7p, 315
tsnsm 1<i<k and x,y satisfy (3.14), m > 1, (3.15)

with a stepsize coefficient v > 0 and boundedness factor ¢ > 1. Note that this
property involves all F': V — V for which the monotonicity assumption (3.2) is
satisfied, as well as all z,y satisfying (3.14) and m > 1. Therefore v and p will
not depend on a particular problem (3.1) under consideration.

A convenient form to derive results on boundedness is obtained by multi-
plying relation (3.14) by (I — A +~yB)~! with v > 0. This yields

y = Rx—i—P(y—i—%tF(y)), (3.16)

where R = (r;;) € R™**¥ and P = (p;;) € R™*™ are given by
R=(I-A+~B)'J, P=(—-A+vyB) '4B. (3.17)

Note that I — A+ B is invertible for any v > 0, because by > 0, and therefore
(3.16) is still equivalent to (3.14). The matrix P is again a lower triangular
Toeplitz matrix, and it has the entry mg = vbo/(1+~bg) € [0, 1) on the diagonal.
The spectral radius spr(|P|) of the matrix |P| = (|pi;|) also equals m, and
because this is less than one it follows that (I —[P[)~" = =7 [P|/. We thus
have

spr(|P|) < 1, (I—|P)~t>0. (3.18)
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3.3.3 Application of a general result on boundedness

To obtain boundedness results for the multistep methods we will use a general
result from Chapter 1. The connection with the notation used in that chapter
is established by writing (3.14) in the form

y = Sx+ AtTF(y) (3.19)
with S € R™** and T € R™*™ defined by
S=(I-A)"1'J, T=(I-A"'B. (3.20)

We note that the matrix I + T = (I — A)~'(I — A + yB) is invertible
for v > 0, and R = (I +~T)"'S, P = (I +~+T)"*4T. Furthermore, the
consistency conditions in (3.5) imply that the linear multistep method is exact
for first-degree polynomial solutions: if u; = a + 5 - jAt (0 < j < k) and
F(u) = 3, then u,, = a + - nAt for all n > k. Since y,, = uk—14n (n > 1) in
(3.19), it follows by varying «, 5 € R that

elS#0 for all j, (3.21a)

(ei—e))T[ST] #0 if i#j, (3.21b)
where [S T is the m x (k+m) matrix whose first k& columns equal those of

S and whose last m columns are equal to those of T'. Application of Theo-
rem 1.2.4, part (ii) in Chapter 1 now yields the following result:

Theorem 3.3.1. Consider a linear multistep method (3.4) satisfying (3.5).
Then, for any seminorm || - || on V, the boundedness property (3.15) is valid
provided that

I =[P)"Y Rl e < p for allm. (3.22)

Moreover, condition (3.22) is necessary for (3.15) to be valid for the class of
spaces V.=RM M > 1, with the mazimum norm.

In the above result, proving necessity of (3.22) is by far the most difficult
part, and for that part the conditions (3.21) are relevant. Showing sufficiency
is much easier, and we will repeat the main arguments here. For this purpose,

note that for any seminorm || - ||, relation (3.16) implies
k m
lyall < > Iriglllesll + D Ipisl sl (1 <i<m)
j=1 j=1

whenever (3.2) is satisfied and At < y79. Setting n = (1;,) € R™, £ = (¢;) € RF
with 7; = [Jy;|| and &; = ||z;||, we thus obtain

n < R+ [P,
where |R| = (|ri;]), |P| = (|pij|)- Since (I —|P])~! >0, it follows that
n < (I—[P)HRIE,
from which it is seen directly that (3.22) implies (3.15).
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3.4 Boundedness and monotonicity results

In this section conditions are given for boundedness and monotonicity of linear
multistep methods. It will always be assumed that (3.5) is satisfied.

To formulate the results we will use some standard concepts for linear mul-
tistep methods, which can be found in Butcher (2003), Hairer, Norsett & Wan-
ner (1993), for example. The stability region of the linear multistep method
is denoted by &, and its interior by int(S). If 0 € S the method is said to
be zero-stable. The method is called irreducible if the generating polynomials
p(¢) = ¢k — Z?:l a;j¢*7 and o(¢) = E;ﬂ:o b;¢*~7 have no common factor.

3.4.1 Boundedness with respect to the input vectors

First we consider the boundedness property (3.15) with @ > 0 arbitrary, giving
boundedness with respect to the input vectors x1, ...,z defined by (3.12). As
we will see, this can be linked to some linear stability properties of the method
and non-negativity of the matrices P, R. It is important to note that these
m X m matrices depend explicitly on ~, and we are interested in m arbitrarily
large.

For a given linear multistep method and given v > 0 we consider the follow-
ing two statements:

there is a g > 0 such that the boundedness property (3.15) (3.23)
is valid for all V = RM | M > 1, with maximum norm |||/« ; '
there is a p > 0 such that the boundedness property (3.15) (3.24)
is valid for any vector space V and seminorm || - || . ‘

The next theorem provides necessary and sufficient conditions for these state-
ments. The proof of the theorem will be given in Section 3.5.

Theorem 3.4.1. Consider an irreducible, zero-stable linear multistep method,
and let v > 0. Then each of the statements (3.23) and (3.24) is equivalent to

—v € int(S), P>0 (forallm). (3.25)

Along with (3.23), (3.24), we also consider the following stronger statement
on boundedness for arbitrary nonnegative sublinear functionals:

there is a u > 0 such that the boundedness property (3.15)
is valid for any vector space V and nonnegative sublinear (3.26)
functional || - || .

Here the restriction to sublinear functionals that are nonnegative has been made
to get a similar formulation as for seminorms; see Remark 3.5.4 below.

Theorem 3.4.2. Suppose the linear multistep method is zero-stable, v > 0 and
R>0, P>0 (forallm). (3.27)
Then statement (3.26) holds.
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Also the proof of this theorem will be given in Section 3.5. In that section
we will also see that if £ = 2 and the method is irreducible, then P > 0 (for all
m) implies R > 0 (for all m). We also have: (3.26) = (3.24) = (3.23) = P >
0, where the last implication follows from Theorem 3.4.1. Consequently, for
irreducible zero-stable linear two-step methods, each of the statements (3.23),
(3.24), (3.26) is valid with stepsize coeflicient v > 0 if and only if P > 0 (for all
In the above results, zero-stability has been assumed in advance. It is clear,
by considering F' = 0, that this is also a necessary condition for the relevant
boundedness properties.

3.4.2 Boundedness with respect to the starting vectors

The above results provide criteria for boundedness with respect to the input
vectors x1, ...,z defined in (3.12). In general, it is more natural to consider
boundedness with respect to the starting vectors ug, ..., ur—_1, as in (3.8). We
therefore consider, similar to (3.15), the following boundedness property of the
linear multistep scheme (3.4):

max ||up|| < fi- max ||u;|| whenever (3.2) is valid, At < v,

hsn<kim 0si<k and (3.4) holds for k<n<k+ m, (3.28)
m > 1.
If || - || is a seminorm, it is easily seen from (3.2) and (3.12) that
k
ol = 3 (o =21+ 21 - g bl

for i = 1,...,k. Consequently, if (3.15) holds with stepsize coefficient v and
factor p, then there is a i such that (3.28) holds.

The reverse is also true for seminorms. To see this, first note that (3.13b) is
the same as (3.4), only with a shifted index. Therefore property (3.28) implies
maxg1<i<ktm |Yil| < Amaxi<;<i ||y;|| when (3.2) is valid and At < y7y. From
(3.13a) we see that

n—1

lynll < llyn — AtboF(ya)l < llall + > (lag = v051 +1b5]) llyn—]l
j=1

for 1 < n < k. Here the first inequality follows by monotonicity of the backward
Euler method for any stepsize; see for instance Hundsdorfer, Ruuth & Spiteri
(2003). By induction with respect to n it is now seen that there are vy, v, ..., vk,
only depending on the coefficients a;,b; and ~, such that

< . . <n< .
lynll < vn - max flz;ll - (1 <n<k)

It follows from the above that the boundedness properties (3.15) and (3.28)
are for seminorms essentially equivalent, in the following sense:
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Lemma 3.4.3. Suppose ||-| is a seminorm on a vector space V, and let v > 0.
Then (3.15) holds with some p > 0 if and only if (3.28) holds with some i > 0.

For sublinear functionals such an equivalence does not hold. As we know
from Theorem 3.4.2, zero-stability and P, R > 0 is sufficient for having (3.15)
with nonnegative sublinear functionals, and we will see in later examples that
this is satisfied with v > 0 for many methods, including methods with some
negative coeflicients a;,b;. On the other hand, by combining results on nonneg-
ativity preservation as given in Bolley & Crouzeix (1978) with the functional
lvllo = —min{0,v1,...,vp} on RM it can be shown that to have (3.28) with
v > 0 for all nonnegative sublinear functionals we need all a;,b; > 0 and v < ¢
with ¢ > 0 given by (3.6).

3.4.3 Monotonicity with starting procedures

For methods with nonnegative coefficients a; and b; we know that monotonicity
is valid with respect to arbitrary starting values wug, w1, ..., ur—1, with stepsize
coefficient v < ¢ given by (3.6). As mentioned before, this only applies to a small
class of methods, and usually only under severe stepsize restrictions. Most pop-
ular methods used in practice have some negative coefficients. For such methods
it is useful to consider specific starting procedures to compute uq, ..., u;—1 from
ug. For a given stepsize, this provides an input vector = determined by ug. For
suitable starting procedures we may still have monotonicity with respect to uy,
even if the multistep methods has some negative coefficients.

Assume that a Runge-Kutta type starting procedure is used, producing a
vector w = [w;| € V™0 such that u; = w;, for i =0,1,...,k — 1; the remaining
w; are internal stage vectors of the starting procedure. For given v > 0 we
write, using (3.12),

x = Roug+ Py (w + ATtF(w)) (3.29)

with matrices Py € R¥*™0 and Ry € R¥*! determined by the starting procedure
and the coefficients of the linear multistep method. Examples are given below.

Theorem 3.4.4. Let ||| be a sublinear functional on a vector space V. Suppose
(3.29) holds with ||w;|| < |luol| (1 <j < mq), y € V™ satisfies (3.14), and

RRy>0, RPy >0, P>0. (3.30)
Then |lyi|| < |luol| for 1 < i < m whenever (3.2) is valid and At < 7.
Proof. From (3.16) we obtain
y = RRouy+RP(w+ %tF(w)) +P(y+ %tF(y)) .
Setting n = (7;) € R™, n; = ||yi|, it follows that
n < (RRo+ RPyé)|uol + Pn,
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with unit vector & = el™0] € R™0. For the special case F = 0, all wj, y; will be
equal to ug, from which it is seen that e = R Ryl + R Pyé + Pe. Consequently

(I—=P)n < (I=P)e-|uoll,

and since (I — P)~! > 0 we obtain n < e - |lug]. O

A standard starting procedure consists of taking k — 1 steps with a given s-
stage Runge-Kutta method with stepsize At. In order to guarantee that |Jw;|| <
[luol| for 1 < j <mg as soon as (3.2) is valid and At < 79, the Runge-Kutta
method itself should be monotonic/SSP with stepsize coefficient ~.

Any Runge-Kutta starting procedure combined with m steps of the linear
multistep method can be written together as one step of a ‘big’ Runge-Kutta
method with mg + m stages. The above result could therefore —in principle—
also have been derived from the results in Ferracina & Spijker (2005), Higueras
(2005). Necessary condition for monotonicity are found in Spijker (2007); it
can be shown from those results that the condition (3.30) is necessary in The-
orem 3.4.4 under a weak irreducibility condition on the combined scheme.

The following example shows how the matrices Ry, Py are obtained for some
simple methods.

Example 3.4.5. Consider a two-step method, and let ¢; = a; —vb; (j = 1,2).

Then
1
R Co C1 (M) T b2 bl up + ;AtF(UO) . (331)
0 c2 uy 0 bo U1+%AtF(U1)
Suppose uj is computed by the f-method, w3 = ug + At(1 — 0)F(ug) +
AtOF (up). This can be written as

At At
w1 = roug + qo (uo + TF(UO)) +q1 (u1 + TF(UI)) (3.32)

with 7o = (14+67) "' (1—(1-0)7), g0 = (1+67) "' (1-0)7, and g1 = (1+6) 0.
This leads to (3.29) with

Ry — <02+C17“o ) , Py = <01(J0+’752 c1q1+b ) 7 (3.33)
C2T0 €240 c2q1+7b2

and w = (ug,u;)” € V2. Of course, if the multistep method is explicit we will
take # = 0, in which case 1o =1 — 1+, go = and ¢; = 0.

Another natural starting procedure for explicit methods is the explicit trape-
zoidal rule (also known as the modified Euler method)

a1 =g+ At F(ug), w1 = uo+ 5At F(ug) + 3AL F(a1).
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Here we get
Al _ Al
U1 = roup + qo (Uo + TF(U())) +q1 (Ul + TF(ul)) (3.34)

with ro =1 — v+ 372, ¢o = 27(1 —7) and ¢ = $~. This gives

Ry = <C2+017“0 ) 7 Py = <Clqo+“/b2 caqr b ) ’ (3.35)

CaTo c2qo  c2q1 Vb2

and w = (uo, i1, u1)? € V3. O

3.5 Technical derivations and proofs

3.5.1 Recursions for the coefficients of P and R

We first take a closer look at the lower triangular m x m Toeplitz matrices

(I—A+yB)™ = > pE, (3.36)
j=0
P=(I-A+vB)"'4B = mE’, (3.37)
Jj=0

with coefficients p;,m; € R. Note that the first » columns of (I — A +~yB)~!,
r = min{k, m}, appear in R € R™**

It is convenient to define p; = 0 for j < 0. The coefficients p, then satisfy
the multistep recursion

k k
P = D ipn-j =Y bipn—j+om  (n>0), (3.38)
j=1 7=0

with Kronecker delta symbol d,0 (whose value equals one if n = 0 and zero
otherwise). In terms of these p,, the coefficients 7,, are given by

k
T =Y bipny  (n>0). (3.39)
j=0
This gives a direct link between these coefficients p,,, 7, and the behaviour of
the linear multistep method applied to the scalar equation
u'(t) = Au(t)  with AtA = —v. (3.40)

Lemma 3.5.1. If —y € § then maxo<n<oco |pn| < 00. Furthermore, if the
method is irreducible and —v € int(S), then there is a k > 0 and 6 € (0,1) such
that |pn| < k0™ for all n > 0.
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Proof. From (3.38) we see that the coefficients p,, are obtained by applying
the linear multistep method to (3.40). If —y € S this recursion is stable, and
therefore the |p,| are bounded uniformly in n.

The characteristic roots of the recursion (3.38) are given by algebraic func-
tions of . If the method is irreducible these functions are not (locally) constant.
It follows that for any —v € int(S) there is a 6 € (0, 1) such that the maximum
modulus of the characteristic roots is less than 6; see Crouzeix & Raviart (1980,
Thm.1.4.2). Writing the solution of (3.38) in terms of these characteristic roots
thus provides the proof. O

Corollary 3.5.2. Suppose the method is irreducible and —v € int(S). Then
E;io m =1

Proof. We have Z;-’:Ol T =eLPe=el (I —(—A+~B)"*(I— A))e. Let
v = (I — A)e. Then only the first k components v; are nonzero. Consequently
we obtain for m >k

eﬂpe = 1_(pm717~'~7p17p0)v = 1—2?21pm—j1}j-

The proof now follows from the previous lemma. O

The recursions (3.38), (3.39) will be used to compute numerically the largest
stepsize coefficient v such that R > 0 or P > 0 with large m. Necessary
conditions for these inequalities can be obtained by computing the first few
coefficients p; and 7; by hand.

Example 3.5.3. For explicit methods we have

po=1, p1r=ar—vbi, p2=a}+az—y(2a1b1 +b)+ b3,
m =0, m = vb1, T = v(a1by + ba) — 72b7.

It is clear that the inequality P > 0 (for all m) with some v > 0 requires
by > 0 and a1by + b2 > 0. These two inequalities were mentioned already in
Hundsdorfer & Ruuth (2006), but now it is seen that these are really needed
for boundedness. <

3.5.2 Proofs of Theorems 3.4.1, 3.4.2

Along with R and P, we will use in this section the m x m Toeplitz matrices
(I — A1t = 250 0;F7 and T = (I — A)7'B = Zj>OTjEj, with entries
0;,7j € R on the j-th lower diagonal, and we write S = (I — A)~1J, cf. (3.20).
Application of Lemma 3.5.1 with v = 0 shows that if the method is zero-stable,
then there is an o > 0 such that |o;| < o for all j > 0.
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Sufficiency of (3.25) in Theorem 3.4.1

The following arguments are somewhat similar to those used in the proof of
Corollary 3.3 of Chapter 1, although the notations are not completely matching.

Assume the linear multistep method is irreducible and zero-stable, —v €
int(S) and P > 0. Setting By = Z?:o |b;|, it follows that |7;] < afp for all
j > 0. Lemma 3.5.1 shows that there is an a; > 0 such that 3>7%[p;| < ai.
Since P > 0, we have

(I = [P)HRl= (I - P)"|R| = (I +T)|R],

rem 3.3.1 thus shows that the statements (3.23), (3.24) are valid.

and consequently ||(I — |P|)7!|R|||c < (1 + yaoBok)ai. Application of Theo-

Necessity of (3.25) in Theorem 3.4.1

To finish the proof of Theorem 3.4.1 it has to be shown that for an irreducible,
zero-stable method the conditions P > 0 and —v € int(S) are necessary for
(3.23).

Any application of method (3.4) to the scalar, complex test equation u/(t) =
Au(t) with A = a + i and real «, 3, can be reformulated as an application to
v (t) = F(u(t)) in V = R? with F(v) = (awv; — Bvg, Bv1 +awvs) for v = (vy,v2) €
V. Choosing A € D ={a+if: -2 < a <0, < min(2 + «,—«)}, we have
(3.2) with 7o =1, V=R?and || - || = || - ||oo. Using Lemma 3.4.3, it thus follows
that property (3.15) implies - D C S. Therefore, if v > 0, then —v € int(S) is
certainly necessary for (3.23).

Assuming —vy € int(S), it remains to show that P > 0 is necessary for
(3.22). Let us write as before P = 3=, m; E/ with coefficients 7; € R. Because
—~ € int(S) we know by Corollary 3.5.2 that Z;io m; = 1. We can write (3.22)
as

(I—|P)7'Rle < pe (for all m),

where & = el*l € R¥ and e = el™ € R™.
Suppose some 7; are negative. Then there is an [ > 1 with Zé‘:o |7 > 1.
Consider now m > [, and let

l
D =Y 6;F  with §; =|m;| for 0<j <.
7=0

We have |[R|é > (eT|R| &) e1 = (1 + vby)~'ey. Furthermore
(I—-|P)y'=I-D)"' =I—|P)"(|P|-D)I-D)"" >0,

and therefore (I — |P|)~te; > (I — D) 'e;. Consequently, (3.22) implies (I —
D)7 te; < fie for all m > 1+ 1 with i = (1 + vbo)u. Note that (I — D)~!is
again a lower triangular Toeplitz matrix, and therefore we also have

(I = D) te; < fue (forallm >1+1and 1 <i<I). (3.41)
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The bounds (3.41) are related to stability of the recursion

l
N = Z 35 Mn—; (for n>1) (3.42)
=0

with starting values ng,...,m—1 € R. For given 7ng,...,m_1 the solution for m
steps of this recursion can be written as (I — D)~1¢ where & = Zli:1 e, € R™
collects the starting values in the form of source terms in the first [ steps.
Therefore, (3.41) implies stability of the recursion (3.42). However, this I-step
recursion has characteristic polynomial

l
d(¢) = ¢' = _o;¢!7.
j=0

Since do = vbo/(1 +vbo) and Y,_,d; > 1, we have d(1) < 0 but d(¢) > 0 for
¢ > 1. Hence there is a root larger than one, which contradicts stability of the
recursion.

Consequently, having some negative entries in P implies that (3.22) is not
satisfied. According to Theorem 3.3.1, also (3.23) is then not satisfied, which
completes the proof of Theorem 3.4.1.

Sufficiency of (3.27) in Theorem 3.4.2

Let ||| be an arbitrary sublinear functional. If P, R > 0 then S = (I—-P)"'R >
0. Moreover, according to (3.18), we also have have spr(|P|) < 1. Assuming
(3.2) and At < 7y, it follows from Theorem 3.9 in Chapter 2 that

A< gy - ; <1 < .
Il < pi- max oy (1< <m) (3.43)

with pu; = Zle 0i—j;, where o; = 0 if [ < 0. If the method is zero-stable, then
[ = SUPj<;co i < 0. For nonnegative sublinear functionals the property
(3.15) then follows.

Remark 3.5.4. Replacement of the p; in (3.43) by = sup, p; is not allowed for
arbitrary sublinear functionals. Boundedness properties for arbitrary sublinear
functionals should therefore not be expressed with (3.15). Theorem 3.4.2 has
therefore been formulated for nonnegative sublinear functionals only.
Necessary and sufficient conditions for boundedness with the form (3.43) for
arbitrary sublinear functionals are given in Chapter 2. However, as noted before,
this will not lead to results in terms of the natural starting values ug, ..., ug_1,
and therefore this will not be pursued here. &

3.5.3 Conditions for R > 0 and P > 0 with two-step meth-
ods

For the case k = 2 we can formulate necessary and sufficient conditions for
having R > 0 or P > 0 (for all m > 1) by writing down explicitly the solutions
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of the recurrence relations (3.38), (3.39) for the coefficients p,, and m, in terms
of the roots of the characteristic polynomial of the recursion (3.38). The deriva-
tions are rather technical and not very revealing. Therefore we only present the
results here, without the full derivation.

So, assume k = 2, and let ¢; = (1+7bg) "' (a; —7b;) for j = 1,2. Setting p; =
0 for i < 0 and pp = (1 + vbo) ™!, the coefficients p,, are given by the recursion
Prn = C1Pn—1+ C2pn—o for n > 1. Furthermore 7,, = vbopn + Yb1pn—1 + Yb2pn—2
for n > 0. These coefficients also satisfy the recursion m, = c1m,_1 + comp_o
for n > 3.

By solving the recursion in terms of the characteristic roots 04+ = %cl +
%\/012 + 4co, thereby considering the cases of real or complex characteristic
roots separately, it follows by some computations that R > 0 (for all m) if and
only if

c1 >0, 012 +4co > 0. (3.44)
We note that under condition (3.44) the characteristic roots are real and 64 >
[0_].

The conditions for P > 0 can be studied in a similar way. For irreducible
methods it can then be shown —by rather tedious calculations— that we have
P >0 (for all m) if and only if (3.44) holds together with

boc1+b1 > 0, b0(0%+02)+b101+b2 >0, b092+b19+b2 >0, (345)
where 0 = 1c1 + 3+/cf + 4ca. The first two inequalities in (3.45) just mean
that T, T2 Z 0.

Remark 3.5.5. For any irreducible linear two-step method it is seen from the

above that R > 0 is a necessary condition for P > 0 (for all m). To show that

irreducibility is essential for this, consider an explicit two-step method with

a1+ag=1,b0=0,b; =1 and by = ay. Here we find that p(¢) = ((—1)({+az2)

and o({) = ¢ + as, so ( = —ay is a common root of the p and ¢ polynomials.
We have

(I-A+yB) ' =1~ (1—-~)BE)'(I +aE)"".

We see from (3.44) that R > 0 iff v < a3 = 1 — a2. However, when calculating
P the common factor drops out, resulting in

P=(I-(1-7)E)"1E,

and therefore P > 0 iff v < 1. Consequently, if a; < 1, then P > 0 does not
imply R > 0 for these reducible methods. <&

3.5.4 Remark on the construction in Hundsdorfer & Ru-
uth (2006) and Hundsdorfer, Ruuth & Spiteri (2003)
Multiplication of (3.14) with a Toeplitz matrix K =}, k;E7 gives

y = Rx+(15—7Q)y+7Q(y+A7tF(y))7
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where R=KJ, P=1— K(I — A) and Q = KB. Taking o = (14 vbo) "}, we

have spr(P) = |1 — ko| < 1. If K > 0 is such that P > @ > 0, then we obtain
as before

n < (I-P)'Re-max|ai| = (I—A)""Je max||z],

where n = (n;) € R™ with n; = |||

Basically —in somewhat disguised form— this is what was used in Hunds-
dorfer, Ruuth & Spiteri (2003) for & = 2 and in Hundsdorfer & Ruuth (2006)
for £ > 2. In those papers, for a given integer [, chosen sufficiently large, the
sequence {r;} was taken to be geometric after index [, that is, kji11/k; = 6
for j > [. Subsequently, x1,...,x;,0 > 0 were determined (by an optimization
code) to yield an optimal ~ such that P >~Q > 0. In fact, for k = 2 the whole
sequence was taken in Hundsdorfer, Ruuth & Spiteri (2003) to be geometric,
Kkj = ko, j > 0.

The present approach is more elegant. Moreover, it has a wider scope in that
it gives conditions that are not only sufficient but also necessary for bounded-
ness. It is remarkable that for many interesting methods the maximal values for
7 seem to be the same. In this respect, note that if we take K = (I — A+~yB)~!
then K >0, P > ~Q > 0 is equivalent to P, R > 0.

3.6 Examples

For some families of methods, with two free parameters, we will display in
contour plots the maximal values of v such that we have boundedness with ar-
bitrary input vectors (for seminorms) or monotonicity with starting procedures
(for sublinear functionals), using (3.25) and (3.30), respectively. These maximal
stepsize coefficients will be called threshold values.

The main criterion for boundedness is P > 0 for all m > 1. To verify this
criterion, we compute the coefficients 7; from (3.38), (3.39) for 1 < j < m
with a finite m, and check whether these coefficients are nonnegative. It is not
a-priori clear how large this m should be taken in order to conclude that all
m; are nonnegative. The figures in this section were made with m = 1000, and
it was verified that with a larger m the results did not differ anymore visually.
For most methods a much smaller m would have been sufficient. Numerical
inspection shows that in the generic case the recursion (3.38) has one dominant
characteristic root 6 € R, giving asymptotically p, = c6™(1 + O(k™)) for large
n, with ¢,k € R, || < 1, and then sgn(m,) = sgn(c Z?:o b;j0~7) is constant for
n large enough, provided 6 is positive.

The threshold values for monotonicity with starting procedures can be ob-
tained in a similar way: the first two inequalities in (3.30) amount to the in-
equality 2?21 Vjpn—j; > 0 for all n > 1 where v = (v1,... ,vk)T is any column
of Ry or Py.

In the following, we will simply write P > 0 and R > 0 if the relevant
inequality holds for all m > 1.
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3.6.1 Explicit linear two-step methods of order one

Counsider the class of explicit two-step methods of order (at least) one. With
this class of methods we can take a1, by as free parameters, and set ao = 1 —aq,
by = 2—a;—b;. The methods are zero-stable for 0 < a; < 2. In case b; = 2—%&1
the order is two. The methods with b; = 1 or a; = 2 are reducible.

FIGURE 3.4: Explicit two-step methods of order one, with parameters ai € [0,2)
horizontally and b1 € [—1,2], by # 1, vertically. Left panel: threshold v > 0 for
boundedness. Right panel: threshold v > 0 for monotonicity with forward Euler
starting procedure. Contour levels at j/20, j = 0,1,...; for the ‘white’ areas there is
no positive 7.

In Figure 3.4 (left panel) the maximal values of -y are displayed for which P >
0. As noted in Section 3.4.1, for the irreducible two-step methods these values
of ~ correspond to the threshold values for boundedness. For the ‘white’ areas
in the contour plot there is no positive v. We already know from Example 3.5.3
that if by < 0 or a; + by — a1b; > 2, then there is no v > 0 for which P > 0.

In Figure 3.4 (right panel), the maximal values of « are shown for which
we have monotonicity with the forward Euler starting procedure. Note that
by = 1 is a special (reducible) case: starting with forward Euler, the whole
scheme reduces to an application of the forward Euler method, so then we have
monotonicity with v = 1.

The methods (3.9) correspond to a; = 3 and by = 3. It is now clear why

B = 0.95 gave a much worse behaviour than § = 1.05 in the numerical example
of Section 3.2. The maximal stepsize coefficient for boundedness is v ~ 0.35
if 2 =0.95and v~ 0.93 if g = 1.05. With forward Euler start the maximal
stepsize coefficient for monotonicity is v = 0.35 if g = 0.95, and it is v ~ 0.82
if § = 1.05. Therefore, the method with § = 1.05 allows much larger stepsizes
for boundedness and monotonicity than the method with 5 = 0.95.
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3.6.2 Implicit linear two-step methods of order two

Likewise we can consider the implicit two-step methods of order (at least) two,
with free parameters a; and by. The remaining coefficients are then determined
by as=1—ay, by =2— %al — 2bg and by = —%al + bg. Again, the methods
are zero-stable if a; € [0,2), and they are A-stable if we also have by > % In
case bg = % + %al the order is three. The methods with by = % are reducible
(to the trapezoidal rule).

The threshold values for boundedness are displayed in Figure 3.5 (left panel).
These values correspond to those found earlier in Hundsdorfer & Ruuth (2006,
Fig.2). We now see from Theorem 3.4.1 that —somewhat surprisingly — the
latter values, which were obtained by ad-hoc arguments, are not only sufficient
but also necessary for boundedness.

. . 0.8

FIGURE 3.5: Implicit two-step methods of order two, with parameters a; € [0,2)
horizontally and by € [0, %], bo # %, vertically. Left panel: thresholds v > 0 for
boundedness. Right panel: thresholds v > 0 for monotonicity with the #-method,
6 = bo, as starting procedure. Contour levels at j/10, 7 = 0,1,...; for the ‘white’
areas there is no positive ~.

For the starting procedure we consider the -method, with 8 = 1 (backward
Euler) or § = by. One might think that the monotonicity properties would be
optimal with § = 1. That turns out not to be the case. In Figure 3.5 (right
panel) the monotonicity thresholds are plotted for § = by. For 6 = 1 these
thresholds become zero in the lower-right part (by < %al) of the parameter
plane; this is due to lack of monotonicity after one application of the two-step

method.

3.6.3 Explicit linear three-step methods of order three

The class of explicit three-step methods of order three can be described with
a1, az as free parameters, and then as =1 — a1 — as, by = %(28 — 5a1 — ag),
by = —1%(1 + a1 —as), by = %(4 + a; + 5az). Inspection shows that these
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methods are zero-stable for (a1, a3) inside the triangle with vertices (—1,1),
(1,—1) and (3,1). Well-known examples in this class are the three-step Adams-
Bashforth method, with a3 = 1, ag = 0, and the extrapolated BDF3 method,
with a; = %, as = 12—1

In Figure 3.6 (right panel) the maximal value of «y is shown such that both
P >0 and R > 0. This corresponds to the values found Hundsdorfer, Ruuth
(2006, Fig. 1). The left panel of the figure shows the maximal ~ for which P > 0

and —v € int(S).

0.5 0.5

0.4 0.4

0.3 0.3

0.5 1 bf 2 25 3 0.5 1 }115 2 25 3
FIGURE 3.6: Explicit three-step methods of order three, with parameters a1 € [0, 3]
horizontally and as € [—1, 1] vertically. Left panel: threshold v > 0 for boundedness,
that is, P > 0 and —v € int(S). Right panel: maximal v > 0 such that P > 0 and
R > 0. Contour levels at j/20, j = 0,1,...; for the ‘white’ areas there is no positive
5.

It is seen that for many of the methods with as > 0.5 the maximal ~ for
which P > 0 is slightly lager than for P, R > 0. For ag < 0.5 there is very
little difference in the two pictures. In particular, the method obtained by
optimization in Ruuth & Hundsdorfer (2005), with a; =~ 1.91 and a3 ~ 0.43, is
still optimal with respect to the threshold value, with v =~ 0.53. Once again,
these results put the earlier findings of Hundsdorfer & Ruuth (2006), Ruuth &
Hundsdorfer (2005) in a new and wider perspective.

3.6.4 Explicit linear four-step methods of order four

For the class of explicit four-step methods of order four, the order conditions
read ag =1 — (a1 +az + a3), by = —i(Qal + 8as + 9a3), by = %(%al + 2ao +
%ag + 16a4 — 18b4), by = %(—al + 3asz + 8ayg — 4b3 — 6b4), b1 = a1 + 2as + 3asz +
day — (by + bz + by). This still leaves three free parameters a1, as, as, which
makes visualization difficult.

We therefore consider a plane that contains three important schemes within
this class: the explicit four-step Adams-Bashforth method (AB4), the extrapo-
lated BDF4 scheme (EBDF4) and the method TVB(4,4) from Ruuth & Hunds-
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dorfer (2005), given in Hundsdorfer & Ruuth (2007) with rational coefficients.

Now two degrees of freedom remain. We take a1, a3 as free parameters, and set
_ 167721 _ _ 43115
az = gagr7 (1 — a1) — Gaspyas-

In Figure 3.7 (left panel) the maximal value of 7 is shown such that the
methods are zero-stable, —y € int(S) and P > 0. The right panel shows the
error constants (defined as in Hairer, Ngrsett & Wanner (2003, Sect. ITI.2) for
the zero-stable methods).

FIGURE 3.7: Explicit four-step methods of order four, with parameters described
above. Left panel: threshold v > 0 for boundedness. Contour levels at j/20, j =
0,1,...; for the ‘white’ areas there is no positive 7. Right panel: log,, of the absolute
error constants for zero-stable methods. Markers: o for AB4, + for EBDF4 and x for
TVB(4,4).

It is seen that the threshold value v for boundedness is relatively large for
the method TVB(4,4), with a1 ~ 2.63 and a3 ~ 1.49. This method was derived
in Ruuth & Hundsdorfer (2005) by numerical optimization of v within the class
of explicit four-step methods of order four, based on the sufficient condition for
boundedness discussed in Section 3.5.4, while keeping the error constants at a
moderate size.

It is clear from the figure that the threshold value for boundedness can be
slightly increased by taking (a1, as) closer to (3,2). But then the error constant
becomes much larger. Therefore the conclusion of Ruuth & Hundsdorfer (2005)
still stands: the TVB(4,4) scheme gives a good compromise between a moderate
error constant 2.38 and a relatively large stepsize coefficient v ~ 0.45.

3.7 Concluding remarks

Based on the general framework of Chapter 1, we have obtained in this chap-
ter stepsize restrictions for linear multistep methods that are necessary and
sufficient for boundedness with maximum norms or arbitrary seminorms (The-
orem 3.4.1). This puts the previously found, more complicated sufficient condi-
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tions of Hundsdorfer & Ruuth (2006), Hundsdorfer, Ruuth & Spiteri (2003) in
a better and wider perspective.

Moreover, it is now also seen that the essential condition for boundedness,
P > 0, arises as a natural condition for monotonicity of linear multistep methods
with Runge-Kutta starting procedures (Theorem 3.4.4). Optimizing the starting
procedures for given classes of multistep methods is part of our ongoing research.

Instead of linear multistep methods, boundedness can be considered for the
related class of one-leg methods. These methods were originally introduced in
Dahlquist (1975) to facilitate the analysis of linear multistep methods. Stability
results with inner-product norms for one-leg methods often have a somewhat
nicer form than for linear multistep methods; see e.g. Butcher (2003), Hairer
& Wanner (1996). We have found that the maximal stepsize coefficient for
boundedness (with general seminorms) of a one-leg method is the same as for
the associated linear multistep method, but simplification of the theory is not
achieved in this way.

In the same way one can study the important class of predictor-corrector
methods. However, for such methods the matrices P and R do become much
more complicated than for linear multistep methods. Instead of simple Toeplitz
matrices we then have to work with block matrices where the blocks have a
Toeplitz structure. Sufficient conditions for boundedness are presented in Chap-
ter 2.



Chapter 4

Comparison of Boundedness and
Monotonicity Properties of
One-Leg and Linear Multistep
Methods

One-leg multistep methods have some advantage over linear multistep meth-
ods with respect to storage of the past results. In this chapter boundedness
and monotonicity properties with arbitrary (semi-)norms or convex functionals
are analyzed for such multistep methods. The maximal stepsize coefficient for
boundedness and monotonicity of a one-leg method is the same as for the asso-
ciated linear multistep method when arbitrary starting values are considered.
It will be shown, however, that combinations of one-leg methods and Runge-
Kutta starting procedures may give very different, and possibly larger, stepsize
coefficients for monotonicity than the linear multistep methods with the same
starting procedures.

4.1 Introduction

4.1.1 The ODE systems and basic assumptions

We consider general systems of ordinary differential equations (ODEs) in a
vector space V on the time interval [0, 00) with given initial value, written as

u'(t) = F(u(t), u(0)=uop, (4.1)

with up € Vand F : V — V. In the following we will make the following basic
assumption: there is a constant 5 > 0 such that

o+ 7F@)| < |v] forallveV, (4.2)

where || - || denotes a norm, a seminorm, or a convex functional on V.
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It is easy to see that (4.2) implies ||v + At F'(v)]| < |Jv| for all At € (0, 70].
Consequently, applying the forward Euler method u, = u,—1 + At F(up—1),
n > 1, with stepsize At > 0 to compute approximations u, = u(t,) at t, = nAt,
we obtain ||u,|| < |Jug|| for n > 1 under the stepsize restriction At < 79. For
general one-step methods, this property under a stepsize restriction At < 7y is
often referred to as monotonicity or strong stability preservation (SSP). In this
chapter we shall study similar properties for multistep methods.

In applications, the vector space V usually is the RM. Useful norms are
for example the maximum norm |[v||cc = maxi<j<as |v;| and the sum norm
lollx = Z;\il |v;| for v = (v;) € RM. Norms that are generated by an inner

product, such as the Euclidian norm ||v||s = (Z;\il |v;j|?)1/2, are not focussed
on in this chapter; for such norms other boundedness results exist, under more
relaxed stepsize conditions, related to G-stability, see Dahlquist (1975) or Hairer
& Wanner (1996), for example.

To include related properties, such as maximum principles (as in Spijker
(2007)) and positivity preservation (as in Chapter 2), it can be useful to consider
more general functionals. Recall that ¢ : V — R is a convex functional on V if

A+ (1 =MNw) < Ap()+ (1 =N pw) (for0<A<1andv,weV).

It is called a nonnegative sublinear functional if (v + w) < @(v) + ¢(w) and
o(cv) = ep(v) > 0 for all real ¢ > 0 and v, w € V. It is a seminorm if we have in
addition ¢(—v) = ¢(v) > 0 for all v € V. Finally, if it also holds that ¢(v) =0
only if v = 0, then ¢ is a norm.

4.1.2 Linear multistep and one-leg methods

In the following we will consider one-leg and linear multistep methods for finding
the approximations u, ~ u(t,) at the step points ¢, = nAt, n > 1. It is
supposed that starting vectors ug, uy,...,ur—1 € V are known.

A linear multistep method applied to (4.1) reads

k k
Uy = Z AjUn—j + At Z bjF(un,j) (43)
j=1 =0

for n > k. The parameters aj, b; and k € N define the method. Along with
this linear multistep method, we also consider the corresponding k-step one-leg

method
k

k
Uy = Z ajUn—j + AtBF (vy,), - Z l;jun_j (4.4)

j=1 =0

for n > k, where IA)j =b;/0 and 8 = Z;ﬂ:o bj # 0. If by = 0 these multistep
methods are called ezplicit, and if by # 0 they are called implicit.
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It will be assumed throughout this chapter that

k k k
aj=1, Y jaj=)_b;>0, by>0. (4.5a)
j=1 j=1 j=0

Here, the two equalities give the conditions for consistency of order one. Having
Z?:o b; > 0 is then necessary for zero-stability of the methods. The assumption
by > 0 will be convenient in this chapter; it holds for all well-known methods.
Furthermore, for the generating polynomials p(¢) = ¢* — Z;ﬂ:l ajCk’J and

a(¢) = Z?:o b;j¢*=7 it will be assumed that
p(¢) and ¢(¢) have no common factor . (4.5b)

Methods that do not satisfy this last condition are said to be reducible (in the
sense of Dahlquist), and these are essentially equivalent to a (k—1)-step method.

One-leg methods were introduced by Dahlquist (1975), originally only to
facilitate the analysis of linear multistep methods. Subsequently, it was realized
that one-leg methods might be useful on their own, not just as an analysis tool.
It is known that the conditions for consistency of order p are the same if p = 1,2,
but for larger p the one-leg method has to satisfy more order conditions than
the corresponding linear multistep method; cf. Hairer & Wanner (1996), for
instance.

On the other hand, one-leg methods have an advantage over the correspond-
ing linear multistep methods with respect to storage, which is very important
for large-scale problems when function evaluations of F' are expensive. If, for
example, ak, by, # 0, then for a step (4.3) with the linear multistep method we
need storage of the vectors up_1, ..., un—g and F(u,—2),..., F(u,_k), together
with an evaluation of F'(u,—1). For a step (4.4) with the one-leg method only
storage of u,—1,...,u,—k is needed, together with evaluation of F(v,,).

4.1.3 Scope of the chapter

In this chapter we will first consider the property

llun| < p- max ||u,| forall n >k and 0 < At <~79, (4.6)
0<j<k
where the factor p > 1 and the stepsize coefficient v > 0 are determined by
the multistep method. If (4.6) holds with v > 0 and p = 1 whenever the basic
assumption (4.2) is satisfied, then this property will be called monotonicity. For
many interesting methods, this property (4.6) will only hold with some p > 1,
in which case we refer to it as boundedness.
It is known, see e.g. Gottlieb, Ketcheson & Shu (2011), Spijker (2007), that
the condition for monotonicity for either the linear multistep method (4.3) or
the one-leg method (4.4) reads

aj 2 ij 2 0 (1f§j S k). 047)
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This requires that all coefficients of the method are non-negative, which severely
restricts the class of methods. It is therefore of interest to study more relaxed
properties.

The boundedness property (4.6), with x> 1, has been studied for linear
multistep methods. Sufficient stepsize conditions At < 71y were derived in
Hundsdorfer, Ruuth & Spiteri (2003), Hundsdorfer & Ruuth (2006) for having
(4.6) with arbitrary seminorms under the basic assumption (4.2). Using the gen-
eral framework of Chapter 1, more simple conditions were found in Chapter 3,
and these more simple conditions were shown be sufficient and necessary.

In (4.6) the starting values wi,...,ux_1 are arbitrary. In practice these
starting values will be computed from the given initial value wug, for instance
by a Runge-Kutta method. For such combinations of multistep methods and
Runge-Kutta starting procedures the following monotonicity property

|un] < |luoll forall n>1 and 0 < At <~719, (4.8)

can still be valid, even if the multistep method itself is not monotone, but only
bounded for arbitrary starting values, that is, (4.6) is valid with x> 1, not with
=1

For some combinations of linear multistep methods and Runge-Kutta start-
ing procedures, the monotonicity property (4.8) was studied in Chapter 3, where
conditions were derived with arbitrary seminorms and nonnegative sublinear
functionals. Earlier, for some two-step methods sufficient conditions with arbi-
trary seminorms were found in Hundsdorfer, Ruuth & Spiteri (2003).

We will first consider the boundedness property (4.6) with arbitrary staring
vectors. It will be seen that the maximal stepsize coefficient for boundedness
of a one-leg method is the same as for the associated linear multistep method.
In view of the close connection between one-leg and linear multistep methods,
this result is not surprising.

Next, we will give conditions for having monotonicity (4.8) for multistep
methods with a starting procedure. Then different conditions will arise for the
one-leg and linear multistep methods.

A detailed study of these conditions for the class of explicit two-step methods
will reveal that combinations of these one-leg methods with natural Runge-
Kutta starting procedures can give monotonicity with much larger stepsizes
than for the linear multistep methods with the same starting procedures.

4.2 General framework

In this chapter we will use general results on monotonicity of Spijker (2007) and
on boundedness of Chapter 1. We will apply the results to the multistep meth-
ods (4.3) and (4.4), but our framework does allow general multistep methods
with any number of internal stages. The notation used in Spijker (2007) and
Chapter 1 will be followed as far as possible.
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For any given m > 1, let ey, ea,..., e, stand for the unit basis vectors in
R™, that is, the j-th element of e; equals one if i = j and zero otherwise. The
m x m identity matrix is denoted by I. Furthermore, e = ey + e+ -+ + e, is
the vector in R™ with all components equal to one. If it is necessary to specify
the dimension we will denote these unit vectors by el™; usually the proper
dimension will be clear from the context.

For any m x [ matrix K = (k;;) we will denote by the boldface symbol K the
associated linear mapping from V! to V™ that is, n = K¢ for n = [n;] € V™,
E=[& eViifny = Zé:l ki;& € V (1 <4 < m). Inequalities for vectors or
matrices are to be understood component-wise. In particular, we will use the
notation K > 0 when all entries x,; of this matrix are non-negative.

Application of a multistep method with a fixed number of steps leads to a
process of the generic form

k m
yi = ) siyxy + Aty tFy;)  (1<i<m), (4.9)
Jj=1 j=1
producing the output vectors y1,¥2,...,¥m from the input data z1,..., 2y in

V. Typically, the set of output vectors will contain approximations u,, n > k,
whereas the input vectors x; will consist of linear combinations of the starting
vectors ug, U1, . . ., ug—1 and their function values F'(ug), F'(u1),..., F(ur—_1).

Let y = [y;] € V™, o = [z;] € V¥, and denote F(y) = [F(y:)] € V™. The
coefficient matrices for the process (4.9) are S = (s;;) € R™* and T = (t;5) €
R™*™_ With the above notations, the generic process (4.9) can be written in a
compact way as

y = Sx+ AtTF(y). (4.10)

Let [S T] be the m x (k+m) matrix whose first & columns equal those of S
and whose last m columns are equal to those of T'. As we will see, the generic
processes that are generated by the multistep methods will be such that all rows
of S are not zero and all rows of [S T are different from each other. With unit
basis vectors e¢; € R™, 1 < i < m, this can be expressed as

e] S #0 for all j, (4.11a)

e/ [ST] # el [ST] if i#j. (4.11b)

It is obvious that two identical rows in [S T lead to two output vectors y;
and y;, ¢ # j, with y; = y; for any function F' and arbitrary input vectors ;.
This was called reducibility in Spijker (2007). In this chapter we will refer to
such a scheme as reducibile (in the sense of Spijker), and a scheme for which all
rows of [S T are different from each other is called irreducible (in the sense of
Spijker).



Chapter 4. Comparison of Boundedness and Monotonicity Properties of One-Leg
110 and Linear Multistep Methods

Boundedness for arbitrary starting vectors

If v > 0 is such that I +~T is not singular, we can write the process also in the
form

y = Rx+P(y+A7tF(y)), (4.12)
where R € R™** and P € R™*™ are given by
R=(I+~T)'S, P = {I+~T)"T. (4.13)

The number of steps with the multistep methods will be arbitrary, so the
number m will allowed to be arbitrarily large as well. Consider, for given vector
space V and seminorm || - ||, the boundedness property

max ||y;|| < p- max [|z;|| whenever (4.2) is valid, At <~ 7, 414
{ 1sizm 1<i<k and x,y satisfy (4.10), m > 1, (4.14)

with a stepsize coefficient v > 0 and boundedness factor p > 1. Note that
this bound holds uniformly for all initial value problems (4.1) under the basic
assumption (4.2) with given 79 > 0.

For any m x m matrix K = (k;;), let spr(K) be the spectral radius of K,
and let || K| = max; )~ |r;;] stand for the induced maximum norm of K. If
K = (kij) is an m x [ matrix, then the matrix with entries |k;;| is denoted
by |K|, From Proposition 1.4.2 and Theorem 1.2.4 in Chapter 1 we have the
following result:

Theorem 4.2.1. Assume I +~T is not singular, and spr(|P|) < 1. Then, for
any vector space V with seminorm ||-||, the boundedness property (4.14) is valid
provided that

1= IPDTRI o < o forallm. (4.15)

Moreover, if (4.11) holds, then the condition (4.15) is necessary for (4.14) to
be valid for the class of spaces V.=RM M > 1, with the mazimum norm.

In this theorem, the assumptions that I+~7 is not singular and spr(|P|) < 1
could be included into (4.15). However, for the multistep methods considered
in this chapter these assumptions will hold trivially.

Furthermore, we note that boundedness as in (4.14), that is, boundedness
with respect to the input vectors x;, can be considered for functionals that
are more general than seminorms. However this does not lead to boundedness
results with respect to the starting vectors wug,...,ux—1, as in (4.6), unless
additional constraints on the methods are imposed. For example, as pointed
out in Chapter 3, for linear multistep methods that would lead again to the
very strict conditions (4.7).
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Monotonicity with starting procedures

Instead of arbitrary starting vectors wug, u1, . .., ur—1 for the multistep methods,
we will consider Runge-Kutta starting procedures to generate these vectors from
up. Assume this starting procedure produces a vector w = [w;] € V™, mg > k,
where u; = w;; for j = 0,1,...,k — 1 and the remaining w; are internal stage
vectors of the starting procedure.

The whole starting procedure, which may consist of several steps of a Runge-
Kutta method, can be conveniently written as a single step

w = equg + AtKoF (w), (4.16)

where eg = el = (1,...,1)7 € R™, and Ky € R™*™0 is the coefficient
matrix of this Runge-Kutta starting procedure. As is well known, see e.g.
Spijker (2007), the conditions of Kraaijevanger (1991)

(I +~vKo) ey >0, (I +~vKo) 'vKo >0 (4.17)

guarantee that the starting procedure itself is monotone with stepsize coefficient
7, that is, ||Jw;]| < [Juoll (1 <7 < mg) whenever (4.2) is valid, At < ~ 7y, for any
vector space V and convex functional || - .
The above Runge-Kutta starting procedure will give an input vector of the
form
x = Soug + AtT[)F(U}) (418)

with Sy € R¥*1 T, € R¥*™o  The total scheme, consisting of the multistep
method and starting procedure can therefore be written as

w = egug + AtKoF(w),
(4.19)
y = SSoup + AtS To F (w) + AtTF(y) .

For the multistep methods, with sum of a; equal to one, the output vectors
y; will be consistent approximations to u(t,) for some n > 0. By considering
F =0 it then follows that

SSy=e, (4.20)
where e = (1,1,...,1)T € R™. Therefore, for any fixed m, the total scheme
(4.19) is then just an (mo+m)-stage Runge-Kutta method, with an (mo+m) x
(mo+m) coefficient matrix

K= %o 0 (4.21)
STy T

To obtain monotonicity results we substitute (v + %F(U)) — v for the
terms AtF(v) in (4.19). This gives, after a little manipulation,

w = (I +~vKo) " eouo + (I +vKo) vKo (w n %F(w)) ,

y = R Roup + R Py (w + ATtF(w)) + P(y + %F(y)) ’ (4.22)
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with matrices R, P as before and
Ro =Sy — ’yTQ(I + 7K0)71€0 , Py = "/To([ + "/Ko)71 . (4.23)

These expressions arise in a natural way by writing z = Rouo+Po (w+ %F(w)) ,
together with relation (4.12).

We will consider, for m arbitrarily large, and a given vector space V with
convex functional || - ||, the following monotonicity property with stepsize coef-
ficient v > 0,

{ max [Jya|| < [Juol| whenever (4.2) is valid, At < y7, and (4 9y
fsnsm x,y satisfy (4.10),(4.16), (4.18), m > 1.

As we will see next, this type of monotonicity of the multistep methods with
starting procedures will hold under the condition

RRy>0, RPy>0, P>0 (for all m > 1), (4.25)

where R, P are defined by (4.13). The following result is similar to Theo-
rem 3.4.4 of Chapter 3, where sufficiency of condition (4.25) was proven for
nonnegative sublinear functionals.

Theorem 4.2.2. Assume I +~T is not singular, spr(|P|) < 1, and the starting
procedure is such that (4.17) holds. Let || - || be a convex functional on a vector
space V. Then (4.25) implies the monotonicity property (4.24). Moreover, if
all rows of the matriz K in (4.21) are different from each other, then (4.25)
18 also mecessary for this monotonicity property to hold for the class of spaces
V =RM, M > 1, with the mazimum norm.

Proof. Assume (4.17). Let n = (n;) € R™ with 0, = ||y;||]. Since we have
lw; + %F(wJ)H < lwill < JJuol| for 1 < 5 < my, it follows from the second
equality in (4.22) that

n < RRo - |luoll + RPyeo - |luol + Prn.

In case F' = 0, all vectors wj,y; will be equal to ug, from which it is seen that
e = R Rol + R Pyeg + Pe. Therefore,

(I—=P)n < (I —=P)e-|uol.

Since spr(P) < 1, we have (I —P)~! = 2oi50 PJ >0, and therefore n < e-||uo||,
that is, ||y:|| < [Jugl| for 1 <i < m. -

If all rows of K are different from each other, the necessity of (4.25) follows
from Spijker (2007), by considering (4.22) for fixed m as a step of a Runge-Kutta
method with coefficient matrix K. O

Because (4.22) has the form of a Runge-Kutta method, sufficiency of (4.25)
could —in principle— also have been derived from the results in Ferracina &
Spijker (2005), Higueras (2005). If the coefficient matrix K in (4.21) has some
identical rows, this Runge-Kutta method is reducible (in the sense of Spijker).
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4.3 Formulations of the multistep methods

In order to apply the above results on boundedness and monotonicity we will
formulate the multistep methods (4.3) and (4.4) in terms of input and output
vectors, similar as in Chapter 3.

As before, e, €9, ..., ey, stand for the unit basis vectors in R™, and I is the
m x m identity matrix. Further, E = [ea,...,€m, 0] will denote the m x m
backward shift matrix, that is, all entries of E are zero except the entries on
the first lower diagonal, which are 1.

Let A, B € R™*™ be defined by

k k
A= aE, B =Y bE, (4.26)
j=1 j=0

where E° = I. These are lower triangular Toeplitz matrices, with coefficients aj,
b; on the j-th lower diagonal. For m > k we also introduce J = [ey, ..., €] €
R™**  containing the first k£ columns of the identity matrix I. To make the
notations fitting for any m > 1, we define J = [e1,...,ep,0] for 1 < m < k,
with O being the m x (k —m) zero matrix. Finally, A, By € R¥** are given by

ag e as ai bk e b2 bl

a a b b
Ay = " By = L @

Qg bk

4.3.1 Formulations of linear multistep methods with input
vectors

The output vectors of the linear multistep scheme (4.3) are y,, = ug—14n, n > 1.
The starting values ug, 41, ..., ur—1 will enter the scheme in the first k£ steps in
the combinations

k k
T = Zajuk_Hl_j + Atz bjF(uk_l_H_j) for1<i<k. (4.28)
=l =1

The multistep scheme (4.3) then can be written as

n—1 n—1
Yn = Tp + Z ajYn—j; + At Z b F'(Yn—j) for 1 <n <k, (4.29)
Jj=1 Jj=0
k k
Yn = Z ajYn—j + AthjF(yn_j) for n >k, (4.29Db)
j=1 3=0

where the starting values are contained within the source terms in the first k
steps. The vectors z1,...,2; € V are the input vectors for the scheme.



Chapter 4. Comparison of Boundedness and Monotonicity Properties of One-Leg
114 and Linear Multistep Methods

Consider m steps of the multistep scheme, m > k, leading to (4.29) with
n=1,2,...,m. The resulting scheme can be written as

y = Jo+ Ay+ At BF(y). (4.30)
Clearly this is of the form (4.10) with
S=(I-A)"'J, T=(I-A"'B, (4.31)
which gives (4.12) with
R=(I-A+~B)"'J, P=(I-A++vB) 'YB. (4.32)

If we consider the problem (4.1) with F' = (8 and solution u(t) = a+ ¢, then
exact starting values u; = u(t;) (0 < j < k) will give u,, = u(t,,) (for all n > k)
because of consistency of the methods. From this it is easily seen that (4.11)
holds, and therefore the scheme is irreducible (in the sense of Spijker). It should
be remarked that this is not directly related to the Dahlquist irreducibility
condition (4.5b) for the multistep methods.

The matrix I — A + B is invertible for any v > 0, because by > 0. The
matrix P is again a lower triangular Toeplitz matrix, and it has the entry
7o = vbo/(1 4+ vby) € [0,1) on the main diagonal. The spectral radius spr(|P])
of the matrix | P| is therefore less than one.

The coefficients of the matrices R and P are easily found recursively. Let
pj=0forj <0. Ifweset (I—A+yB)"'=> o pnE"and P=3 . mE",
then these Toeplitz coefficients p,, 7, are given by pg = 1/(1 + vbo) and

k k
Pn = Zajpn_j — ’yz b;ipn—; forn > 1, (4.33a)
j=1 . j=0
Ty = ’yijpn_j forn > 0. (4.33Db)
§=0

An inequality of the type Rv > 0 for all m > 1, with a vector v = (vy,...,v)7,

is now equivalent to having Z?:l Vjpn—j > 0 for all n > 1.

4.3.2 Formulation of one-leg methods with input vectors

To derive results for one-leg methods, we will proceed in a similar way, using
an input-output formulation. To distinguish the arising vectors and associated
matrices for the one-leg methods from those of the linear multistep methods,
we will use the upper bar symbol for the one-leg vectors and matrices. In
particular, the matrices S, T, R, P will be as in (4.31) and (4.32) for the linear
multistep methods, and the corresponding matrices for the one-leg methods will
be denoted by S, T, R and P. Likewise, in the generic form (4.9), (4.10) the
dimensions m, k will now read m and k.
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Consider m steps of the one-leg method (4.4), and let § = [7;] € V™, m =
2m, with
Ui = Uk—14i> Ymti = Vk—14i for1<i<m. (4.34)

As input we have z = [z,] € VF, k = 2k, with
k k
T; = Zajuk_1+i_j ,  Tigtk = ijuk_1+i_j i=1,...,k. (435)
Jj=t j=i

Let J € R™** and A,B € R™*™ be as before. Then the m steps of the
one-leg method can be written as

y=Jz+ Ay+ atBF(y), (4.36)

where J € R™** and A, B € R™*™ are given by

J:<JO>,A=<A O),B:<Om>, (4.37)
0J 3B O 0 O

with zero matrices O € R™*™ and 0 € R™>*¥. We can rewrite (4.36) in the
following form, comparable to (4.10),

y = Sz+atTF(y) (4.38)
with § € R™*F and T € R™*™ defined by
S=(I-A)"'J, T=(I-4A)"'B, (4.39)

with /m x m identity matrix I. Working out these matrices, in terms of S =
(I —A)"'Jand T = (I — A)~1B, gives

5 s 0 s_ [0 BI-A)" (1.40)
iBS 1)’ o) T ' '

This can be further rewritten, for example with BS = T'J.

If there is only one index j, 0 < j < k, with b; # 0, then the one-leg method
is the same as the linear multistep method. For genuine one-leg methods, with
b; # 0 for at least two indices j, it will now be shown that the scheme is
irreducible (in the sense of Spijker).

Lemma 4.3.1. Suppose bj # 0 for two or more indices 0 < j < k. Then all
rows of [S T| are different from each other.

Proof. The u,,v, are consistent approximations to u(t,), u(t,), respectively,
with £, = Z?:o bjt,—;. Using the same argtilmients as for the linear multistep
methods, it follows that the first m rows of [S T are different from each other,
and the same holds for the last m rows.
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It remains to show that none of the first m rows can be equal to any of the
last m rows. For this it is sufficient to show that the m x (m + k) matrices

Cy=(0 pI-4)" and Cy = (J T)

have no common rows. Because of the entry J in Cb, it is clear that the first k
rows of C cannot coincide with any of the rows of Cf.

Since the lower triangular Toeplitz matrices B and I — A commute, we also
have T = B(I — A)~!. Equal rows of (I — A)~! and T can therefore only
happen if gel (I — A)~! = efB(I — A)7! with i > j. But then Bel = e;‘-FB,
which implies that either 7, j < k or that only the coefficient b;_; is not zero.

Consequently, if the matrices C; and C3 have common rows, then there is
only one index j, 0 < j < k, with b; # 0. O

As for the linear multistep methods, it follows from consistency of the one-leg
method that S has no zero rows. The conditions (4.11) are therefore fulfilled
with the matrices S, T instead of S, T, provided the one-leg method is not a
linear multistep method.

Since I + 4T is invertible for any v > 0, the same holds for I + 7. From
(4.36) we therefore obtain the transformed form, comparable to (4.12),

j = Rz+ P(g + A%F(g)) , (4.41)

where R € R™*F and P € R™*™ are given by
R=({I-A+~yB)"'J, P = (I-A++B)"'4B. (4.42)
These matrices R and P in (4.42) for the one-leg method will be expressed

in terms of the m x m matrices R and P for the linear multistep method, as
given by (4.32). Let us here denote L = (I — A+ vB)~!. Then it is found that

S I—A Byl \ L —BL
I-A+~B)7! = = .
( +5) <—%B I ) <%BL (I—A)L)

The blocks consist of products of Toeplitz matrices that commute. Since LJ =
R, it follows that

R:< B -hER ) P = (O 57L>. (4.43)
LBR (I-A)R o P

Note that since spr(|P[) < 1, we also have spr(|P|) < 1. Furthermore we see
that P >0 iff P >0 and R > 0.
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4.4 Boundedness for arbitrary starting vectors

In this section conditions are given for boundedness of the multistep methods
(4.3) and (4.4). It will always be assumed that (4.5) is satisfied. Furthermore,
in this section, boundedness is understood in the the sense of property (4.14)
for any seminorm, with some p > 1, and with y;, x;, m, k replaced by ¥;,z;,m
and k, respectively, for the one-leg methods.

To formulate the results we will use some standard linear stability concepts
for multistep methods, as given in Butcher (2003) Hairer, Norsett & Wanner
(1993), Hairer & Wanner (1996) for instance. We denote the stability region of
the methods by S, and its interior by int(S). If 0 € S the method is said to be
zero-stable.

It was shown in Chapter 3 that for a zero-stable linear multistep method
satisfying (4.5), the condition

—v € int(S), P>0 (forall m). (4.44)

is necessary and sufficient for the boundedness property (4.14) to hold with
some [ > 1.

As we will see, the same result is valid for the one-leg methods. This can be
shown using relations between a linear multistep method and the corresponding
one-leg method, as given in Dahlquist (1975) or Hairer & Wanner (1996). It is
also possible to prove this from Theorem 4.2.1, which will be done here.

For this, we consider the matrix

M = (I—|P))"YR| = <M“ Mis ) (4.45)
M1 Moo

Using the fact that (I — A)R = (I — P)J and BR = %PJ, it follows by some
calculations that the blocks M;; € R™*k can be written as

My, = (I—|P|)" R,
My = I—|P))~YI—-P|+1)|R|,
12 1’7(( [P~ | )| | (4.46)
My = - (I |P)HP|J,
Moy = (I—|P|)71|I—P|J.

According to Theorem 4.2.1, boundedness of the one-leg method is equiva-
lent to having a bound || M|/ < p uniformly for m > 1. By considering the
Mj1 block, we therefore see that boundedness of the one-leg method implies
boundedness of the linear multistep method.

On the other hand, suppose the linear multistep method is bounded. Then
we know that P > 0. Zero-stability implies that ||S]| is bounded uniformly in
m. Therefore, the maximum norms of the matrices R and

(I—|P)'J=(I~-A+~+B)S
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are also bounded uniformly in m. Using the relations (I—P)™1P = (I-P)~1—1
and (I — P)~YI — P| < (I — P)~Y(I + P), it follows that the maximum norms
of all the blocks M;; in (4.46) are bounded uniformly in m.

In conclusion, we have the following result on boundedness for our multistep
methods (4.3) and (4.4).

Theorem 4.4.1. Consider a one-leg or linear multistep method, satisfying
(4.5). Assume the method is zero-stable, and let v > 0. Then there is a pu > 1
such that the boundedness property (4.14) is valid for any vectorspace V and
seminorm || - || if and only if condition (4.44) holds.

The above result, with equal stepsize coefficients for a one-leg method and
its linear multistep counterpart, is hardly surprising, given the close connection
between one-leg methods and linear multistep methods. We will see, however,
that the allowable stepsizes for one-leg and linear multistep methods can be
very different if we require monotonicity with starting procedures.

The boundedness property (4.14) is expressed in terms of the input vectors
x;. However, with seminorms this is easily translated into boundedness with
respect to the starting values ug,...,ux_1 as in (4.6), and likewise reversely;
see also Section 3.4.2 of Chapter 3.

Remark 4.4.2. As observed before, we have P > 0 iff P > 0 and R > 0. This
is slightly stronger than having only P > 0. As a consequence, boundedness of
the one-leg method does not require P > 0. &

4.5 Monotonicity with starting procedures

4.5.1 Linear multistep methods with starting procedures

Consider the Runge-Kutta starting procedure (4.16), producing the vector w =
[w;] € VMo, Let Jo € R¥*™Mo be the matrix, with columns ey, ..., e, € RF
interceded by zero columns, which selects those components w; that correspond
to a starting value u; of the multistep method, that is,

J()’UJ = (U(), s 7uk—l)T ) JoF(’UJ) = (F(uﬂ)v R F(uk—l))T
Further, let Ao, By be as in (4.27). Then it follows from (4.28) that
z = AoJow + AtBOJOF(w) . (447)

This gives the representation z = Soug + AtTo F(w), as in (4.18), with matrices
Sy € RF*L Ty € RFX™o given by

So = AQJoeo 5 TO = AQJOKO + B()JO . (448)

To obtain monotonicity results, the scheme is now written in the form (4.22)
with matrices R, P given by (4.32) and with Ry € R**! Py € RF*™0 given by

Ry = AgJoeo — Pyeg Py = "/(AQJ()KO + BOJO)(I + "/Ko)_l . (4.49)
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These matrices Rg, Py can be further rewritten as
Ro = (Ag — vBo)Jo(I +vKo) e, (4.50a)
Py = (Ag = vBo)Jo(I +~vKo)~'vKo +~vBoJo - (4.50b)
Consequently, the conditions (4.25) for monotonicity of the total scheme are:
P >0,
R (Ao —vBo)Jo(I +vKo)teg > 0, (4.51)
R ((Ao —vBo)Jo(I + vKo) 'vKo +vBoJo) = 0.

The first inequality, P > 0, is the essential condition for boundedness of the
linear multistep method.

4.5.2 One-leg methods with starting procedures

As for the linear multistep methods, we now consider the formulas that are
obtained if a Runge-Kutta starting procedure is used for a one-leg method. It
is assumed, as before, that this starting procedure is of the form w = egug +
AtKoF (w) and Jow = (ug, . ..,ur—1)T. From (4.35) it is then seen that

T = Ao Jow = Ao Jo (eouo + AtKoF(U})) .
5Bo 1By

B

This can be written as

T = Soug + AtToF(w), (4.52)
with
. A - A
SO = 1 0 J()eo, TO = 1 0 JOKO. (453)
550 550

As before, for any fixed number of steps m, the total scheme is an (mg+m)-
stage Runge-Kutta method, m = 2m, with an (mo+m) x (mo+m) coefficient

matrix
K= Ko O} (4.54)
ST, T
To derive monotonicity results we substitute, as before, (v + %F(U)) —yv
for all terms AtF'(v). This gives, as in (4.22), the total scheme in the form

w = (I +vKo) eouo + (I +7Ko) '7Ko (w + %F(w)) ,

5= RRoug+ RPy(w+ 2L F(w)) + B(y + 2LF(p).
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with matrices R, P given by (4.43) and
RQ = 50 — Poeo, PQ = "/To(I + "/Ko)71 . (455)
Inserting the expressions (4.53) into (4.55) gives
D Ao -1 Do Ao —1
R() = 1 J()(I + ’}/KQ) €9, P() = 1 J()(I + ’}/KQ) ’yK(). (456)
Bo aBo

To compare the occurring matrices in the monotonicity requirement for the
one-leg method with those of the linear multistep method, we note that

R Ao ) _ R(Ao —vBo) _ R(Ao —vBo)

%BO %(BRAQ + (I — A)RBQ) %(PJ(AO — "/Bo) + "/JB())
The conditions for monotonicity of the total scheme, RRy > 0, RPy > 0 and
P > 0, therefore read

P>0, R>0,
R (Ao —vBo)Jo(I + vKo) ey > 0,
R(Ay —vBo)Jo(I +vKo) " 1vKo > 0, (4.57)

(PJ(AO —vBy) -l—"/JBo) Jo(I + 7K0)71€0 >0,

(PJ(Ao —vBo) +vJBo) Jo(I + vKo) 7Ky > 0.

Although the one-leg methods give the same stepsize coefficients for bound-
edness as the corresponding linear multistep methods, this is no longer so if
monotonicity with starting procedures is considered.

4.6 Application for explicit two-step methods

As an application of the general formulas derived in the previous section, we
will give here detailed results for explicit two-step methods of order one. With
this class of methods we can take a1, b; as free parameters, and set as = 1 —ay,
by = 2 — a1 — by. The methods have order two if by = 2 — %al, and they are
zero-stable if 0 < a7 < 2. The methods with by = 1 or a; = 2 do not satisfy the
Dahlquist irreducibility condition (4.5b). Furthermore, if b1 = 0 or b = 0, then
the one-leg methods coincide with the corresponding linear multistep methods.
It will therefore be assumed for the one-leg methods that b; # 0 and bs # 0.
For this family of methods, with free parameters ai, by, we will display in
contour plots the maximal values of « such that we have monotonicity or bound-
edness with arbitrary starting vectors (for seminorms) or monotonicity with
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starting procedures (for convex functionals). These maximal stepsize coeffi-
cients will be called threshold values.

In these plots, by = 1 is a special case: starting with forward Euler, the
whole linear two-step scheme reduces to an application of the forward Euler
method, so then we have monotonicity with v = 1. Furthermore, for the one-
leg methods a; + by = 2 is also a special case: we then have by = 0, so the
one-leg method is then a linear multistep method, written in a reducible form.

In Figure 4.1 (left picture), the maximal values of  are shown for which we
have monotonicity with arbitrary starting vectors. These values are obtained
from condition (4.7). For the ‘white’ areas in the contour plot, there is no
positive .

The threshold values for boundedness are shown in Figure 4.1 (right picture).
These thresholds, which are the same for the one-leg and linear multistep meth-
ods, coincide with those in Figure 4.4 of Chapter 3. We see that for boundedness
the area of nonzero thresholds is much larger than for monotonicity and it in-
cludes many interesting methods, for example the second order methods with
bl =2 %al.

Monotonicity Boundedness

0.9 0.9
08 08
0.7 0.7
///\ 0.6 0.6
= /////// 05 05
0.4 0.4
03 03
0.2 0.2
0.1 0.1

05 1 15 05 1 15

a aq

FIGURE 4.1: Explicit two-step methods of order one, with parameters a1 € [0, 2)
horizontally and by € [—1, 2], by # 1, vertically. The contour plot shows the optimal
~ > 0 for monotonicity (left picture) and for boundedness (right picture). The contour
levels are at j/20, j = 0,1,...; for the ‘white’ areas, there is no positive .

The theshold values for boundedness have been found numerically, verifying
the condition P > 0 with m = 1000. Inspection with larger m showed that the
results do not differ anymore visually; in fact, for most methods a much smaller
value of m would have been sufficient. This condition for boundedness, as well
as the conditions for monotonicity —such as (4.51) and the related conditions
(4.57) for the one-leg methods — were verified in the same way, using the recursive
formulas (4.33) for the coeflicients of the relevant Toeplitz matrices.
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4.6.1 Starting procedure: the explicit Euler method

Consider explicit two-step methods, and suppose 14 is computed by the forward
Euler method,
up = up + AtF(uo) . (458)

This is of the form (4.16) with mg = 2, w = (w1, w2)T = (ug,u1) € V? and we

get
Ko=[ Y 9), =1 O0) (4.59)
1 0 0 1

For the linear multistep methods we then obtain from (4.50),
e (). ()
(1 —79)ca ye2  be

with ¢; = a; — vb; for j = 1,2. For the one-leg methods this Euler starting
procedure leads to (4.56) with

as+ (1 —v)ay ya; 0

Ro=| . (1—7)CL2A ’ B= | 7% 0 (4.61)
ba+(1 — )by vb1 0
(1 —7)b2 vba 0

The total schemes with the linear two-step methods are irreducible (in the
sense of Spijker) because all u,, are consistent approximations to u(t) at different
time levels. The combinations of the two-step one-leg methods and the forward
Euler starting procedure are also irreducible (in the sense of Spijker) if b; # 0
for j = 1,2. To show this we consider such a total scheme, written as one step
of a big Runge-Kutta method with coefficient matrix

K= B ©
STy T

where S € R™*4 T, € R**2 and T € R™*™ are given by

aq 0
5 (I-A)~' 0 - ?20 CTe O pI—-A1 .
FBUI—A)T T by 0 O B(I-A)!
by 0

It is clear that the matrix 3(I — A)~! has no zero row. The first row of the lower
triangular Toeplitz matrix B(I — A)~! is the only zero row of that matrix. The
first row of (%B(I — A)7YJ )Ty is (by 0), and since by # 0, by # 0, it is seen
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LM methods OL methods
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FIGURE 4.2: Optimal v > 0 for monotonicity of the explicit two-step methods with
explicit Euler starting method. Left picture: linear multistep methods; right picture:
one-leg methods. Explanations as in Figure 4.1

that this cannot be equal to any row of Ky. Therefore the coefficient matrix K
of the total scheme has no equal rows.

In Figure 4.2 the maximal values of v are shown for which we have mono-
tonicity with the forward Euler starting procedure for the explicit linear two-step
methods (left picture) and the explicit one-leg methods (right picture). From
this figure we conclude that the monotonicity properties with forward Euler
starting procedure are better for these explicit one-leg methods than for the
corresponding linear multistep methods.

4.6.2 An example on the relevance of irreducibility

The general conditions (4.25) for monotonicity are always sufficient. If the total
scheme is reducible (in the sense of Spijker), that is, if some rows of the matrix
K in (4.21) are equal, then these conditions (4.25) may not be necessary. As
an illustration for this, consider the linear two-step methods of order one with
the following starting procedures:

wy = ug, wy = ug + AtF(wy), (4.62a)

with 41 = ws, and
w1 = ug, we = ug , w3 = ug + %(F(wl) + F(ws9)), (4.62b)
with w3 = ws. Both these starting procedures are just the explicit Euler

method, but the second form is reducible, with a redundant second stage. Even
though the starting schemes are essentially equivalent and the corresponding
input vectors x; are the same, the matrices Ry and Py will differ, leading to
different results with (4.25).
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The largest v > 0 for which (4.25) holds is displayed in Figure 4.3. It is clear
that, in comparison to (4.62a), these values ~y are often smaller for the reducible
procedure (4.62b). Note that for the irreducible case (4.62a) the values ~ are
necessary and sufficient; in the reducible case these values are only sufficient.

Scheme (4.62a) Scheme (4.62b)

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.5 1 15 0.5 1 15
a ay

FIGURE 4.3: Largest v > 0 for the monotonicity conditions (4.25) with the linear
two-step methods and irreducible or reducible Euler start. Left picture: irreducible
form (4.62a); right picture: reducible form (4.62b). Explanations as in Figure 4.1

4.6.3 Starting procedure: the explicit trapezoidal rule

Now suppose that u; is computed by the explicit trapezoidal rule, also known
as the modified Euler method,

v1 =ug + AtF(ug), w1 =up+ %AtF(uo) + %AtF(vl) . (4.63)

This fits in our general form with mg = 3, w = (w1, wa, w3)T = (ug, vy, us)”

and
0 1 00
o |, Jo= . (4.64)
0 0 0 1

Here we have |lw;| < |luo]l (1 < j < my), whenever (4.2) is valid and At < 7.
For the linear multistep method this gives, as in Chapter 3,

Ry — <C2+017“0 ) 7 P = <01(J0+7b2 caq b ) ’ (4.65)
CaTo c2qo  c2q1 Vb2

Ky =

N[= = O
= o O

with ¢; =a; —b; for j =1,2,and ro =1 — + %’YQ, o = %7(1 —v), 1 = %'y.
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For the one-leg methods we obtain, with the same rg, qo, g1, the formulas

az + airo aiqo aiqr O

Ro— | . @0 ’ = | %% @ 0 (4.66)
by + birg bigo big1 0O
b27"0 szo b2(J1 0

In the same way as with the explicit Euler starting procedure, it can be
verified that the total schemes are irreducible (in the sense of Spijker), under
the assumption b; # 0 (j = 1,2) for the one-leg methods.

The maximal values of v > 0 for monotonicity with this explicit trapezoidal
rule starting procedure are shown in Figure 4.4; in the left picture for the linear
two-step methods, and in the right picture for the one-leg methods.

For the linear multistep methods monotonicity with the explicit trapezoidal
rule as starting procedure leads to monotonicity thresholds that are less than
or equal to those with the forward Euler method. In fact the results are quite
close —but not identical - to those with the reducible procedure (4.62b).

The one-leg methods with the explicit trapezoidal rule as starting method
give here almost the same thresholds as with the forward Euler method, except
for a parameter region with a;,b; > 1. There the thresholds are somewhat
improved with the explicit trapezoidal rule. This is in marked contrast to the
situation for the corresponding linear multistep methods, where the thresholds
deteriorate with this starting method in comparison with the explicit FEuler
start.

LM methods OL methods

77—
% 04

0.3
0.2
0.1
0.5 1 15 0.5 1 15
a a

FIGURE 4.4: Optimal v > 0 for monotonicity of the explicit two-step methods with
with the explicit trapezoidal rule as starting method. Left picture: linear multistep
methods; right picture: one-leg methods. Explanations as in Figure 4.1
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4.6.4 Explicit two-step methods of order two

The most interesting explicit two-step methods are of course those with order
two, by = 2 — %al. This is a one-parameter family with a; as free parame-
ter. Here a more clear picture is provided in Figure 4.5, where thresholds are
plotted for boundedness and monotonicity with forward Euler and the explicit
trapezoidal rule as starting methods for the linear two-step methods and the
corresponding one-leg methods.

0.8

0.6

0.4

0.2

LM methods

g, - 08 h

05

15

0.6

0.4

0.2

OL methods

0.5

15

FIGURE 4.5: Explicit two-step methods of order two, with parameter a1 € [0, 2).
Vertical axis: thresholds for boundedness or monotonicity. Left picture: linear multi-
step methods; right picture: one-leg methods. Dashed line: boundedness; solid lines:
monotonicity with forward Fuler start; dash-dotted lines: monotonicity with explicit
trapezoidal rule as starting method (with v = 0 for the linear two-step methods).

The curves in these figures describing the thresholds are actually quite sim-
ple. The condition for boundedness is v < f(a;) with f(z) = 22(3—2)/(4 - 2)?;
this value was shown in Hundsdorfer, Ruuth & Spiteri (2003) to be sufficient
and from the requirement o = y(a1b1 + az) —v2b? > 0, it directly follows that
it is also necessary.

For the linear multistep methods with forward Euler start it can be shown,
in the same way as in Pham Thi, Hundsdorfer & Sommeijer (2006), that a
sufficient condition for monotonicity is given by v < min{gi(a1), g2(a1)} with
q1(z) = z/(4— 2), g2(2) = (2 — 2)/z; see also results in Hundsdorfer, Ruuth &
Spiteri (2003) for a; < %. We see in the figure that these sufficient conditions for
monotonicity are also necessary. With an explicit trapezoidal rule start there
is no positive threshold for monotonicity; this can be shown by considering the
Runge-Kutta method that arises with m = 1, giving the coefficient matrix

0
1
K= 0 (4.67)
1 1 9
2 32
B B2 Bz 0

with 81 = by + %al, Bo = %al and (B3 = by being the weights of this explicit
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3-stage method. The conditions for order two imply that 5, = 0, and using
Thoerem 4.2 of Kraaijevanger (1991) it can be shown that this Runge-Kutta
method does not have a positive stepsize coefficient for monotonicity.

For the one-leg methods with forward Euler starting procedure we have
~ < min{ f(a1), hi(a1)} as sufficient condition with h(z) = 2(2—2z)/(4—z). This
follows from the results in Pham Thi et al. (2006) on positivity. With an explicit
trapezoidal rule start the sufficient condition becomes v < min{ f(a1), ha(a1)}
with ho(z) =1— /(32 —4)/(4 — 2). This sufficient condition can be derived in
a similar way as in Pham Thi et al. (2006). Again, we see from Figure 4.5 that
these sufficient conditions for monotonicity are necessary as well. This necessity
can be proven by considering the Runge-Kutta methods that arise with m =1
and m = 2, that is, after one or two steps of the one-leg method with these
starting procedures.

4.7 Concluding remarks

In view of the reduced storage requirements, compared to linear multistep meth-
ods, one-leg methods are interesting for large-scale computations. In this chap-
ter results have been presented for having boundedness with arbitrary starting
values, as well as for monotonicity with Runge-Kutta starting procedures.

It was seen that the stepsize restriction At < 7y for the boundedness prop-
erty (4.6) with seminorms is the same for a one-leg method as for the associated
linear multistep method. However, differences between one-leg methods and lin-
ear multistep methods arise when we consider the monotonicity property (4.8)
with starting procedures.

For explicit two-step methods it is seen that the monotonicity properties
with standard starting procedures are better for the one-leg methods than for
the linear multistep methods. However, no general conclusions are to be drawn
from this. For the implicit two-step methods of order two it was found that
the requirements for monotonicity, starting with backward Euler or with the
f-method, 6 = by, were not always better for the one-leg methods than for the
corresponding linear multistep methods. These implicit methods turn out to
have thresholds less than or equal to two. Since this is not very much larger
than for the explicit methods, the implicit methods are not recommended if
monotonicity is important, and therefore the results for these implicit methods
have not been discussed here in detail.

Numerical tests were performed for scalar conservation laws u; + f(u), =
in one spatial dimension with f(u) = u (linear advection) and f(u) = su
(Burgers equation). Spatial discretization was done with a van Leer type flux-
limited scheme, for which it is known that the resulting ODE system satisfies
the basic assumption (4.2) with 7y proportional to the meshwidth in space Ax.
However, no significant difference was found in these tests between the explicit
two-step one-leg methods and the corresponding linear multistep methods with
the various starting procedures, even though the theoretical properties of the

0
2
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one-leg methods are more favourable than those of the linear multistep methods.

Therefore, the practical relevance of the differences between one-leg and
linear multistep methods found in this chapter are not yet fully established. On
the other hand, for practical computations the theoretical findings do give a
foundation for the explicit two-step one-leg methods with explicit trapezoidal
start that is more solid than for the linear multistep methods.



Bibliography

1

2]

3]

[4]

[5]

[6]

7]

8]

[9]

[10]

[11]

[12]

Bolley C. & Crouzeix M. (1978). Conservation de la positivité lors de la
discrétisation des problémes d’évolution paraboliques, RAIRO Anal. Nu-
mer. 12, 237-245.

Butcher J.C. (1966). On the convergence of numerical solutions to ordinary
differential equations. Math. Comp. 20, 1-10.

Butcher J.C. (1987). The numerical analysis of ordinary differential equa-
tions. Wiley.

Butcher J.C. (2003). Numerical methods for ordinary differential equations.
Wiley.

Crouzeix M. & Raviart P.-A. (1980). Approzimation des Probléemes
d’Fvolution. Lecture Notes, University Rennes.

Dahlquist G. (1975). Error analysis for a class of methods for stiff nonlinear
initial value problems, Procs. Dundee Conf., Lecture Notes in Math. 506,
G.A. Watson (ed.), Springer, 60—74.

Ferracina L. & Spijker M.N. (2004). Stepsize restrictions for the total-
variation-diminishing property in general Runge-Kutta methods, STAM J.
Numer. Anal. 42, 1073-1093.

Ferracina L. & Spijker M.N. (2005). An extension and analysis of the Shu-
Osher representation of Runge-Kutta methods, Math. Comp. 74, 201-219.

Gottlieb S., Ketcheson D.I. & Shu C.-W. (2009). High order strong stability
preserving time discretizations, J. Sci. Comput. 38, 251-289.

Gottlieb S., Ketcheson D.I. & Shu C.-W. (2011). Strong stability preserving
Runge-Kutta and multistep time discretizations, World Scientific Publish-
ing Co. Pte. Ltd.

Gottlieb S. & Shu C.-W. (1998). Total-variation-diminishing Runge-Kutta
schemes, Math. Comp. 67 73-85.

Gottlieb S., Shu C.-W. & Tadmor E. (2001). Strong stability preserving
high-order time discretization methods, SIAM Review 43, 89-112.



130 Bibliography

[13] Hairer E., Norsett S.P. & Wanner G. (1993). Solving ordinary differential
equations I — Nonstiff problems. Second edition, Springer Series Comput.
Math. 8, Springer.

[14] Hairer E. & Wanner G. (1996). Solving ordinary differential equations II —
Stiff and differential-algebraic problems. Second edition, Springer Series in
Comput. Math. 14, Springer.

[15] Harten E. (1983). High resolution schemes for hyperbolic conservation laws.
J. Comput. Phys. 49, 357-393.

[16] Harten E., Hyman J.M. & Lax P.D. (1976). On finite-difference approxi-
mations and entropy conditions for shocks. with appendix by B. Keyfitz.
Comput. Pure Appl. Math. 29, 297-322.

[17] Higueras I. (2004). On strong stability preserving time discretization meth-
ods, J. Sci. Comput. 21, 193-223.

[18] Higueras I. (2005). Representations of Runge-Kutta methods and strong
stability preserving methods, STAM J. Numer. Anal. 43, 924-948.

[19] Horn R.A. & Johnson C.R. (1998). Matriz analysis, Cambridge University
Press, Cambridge.

[20] Horvath Z. (1998). Positivity of Runge-Kutta and diagonally split Runge-
Kutta methods, Appl. Numer. Math. 28, 309-326.

[21] Horvath Z. (2005). On the positivity step size threshold of RungeKutta
methods, Appl. Numer. Math. 53, 341-356.

[22] Huang C. (2009). Strong stability preserving hybrid methods. Appl. Num.
Meth. 59 891-904.

[23] Hundsdorfer W. & Ruuth S.J. (2003). Monotonicity for time discretiza-
tions, Dundee Conference Report NA /217 2003, D. F. Griffiths and G. A.
Watson, eds., University of Dundee, Dundee, UK, 85-94.

[24] Hundsdorfer W. & Ruuth S.J. (2006). On monotonicity and boundedness
properties of linear multistep methods, Math. Comp. 75, 655-672.

[25] Hundsdorfer W. & Ruuth S.J. (2007). IMEX extensions of linear multistep
methods with general monotonicity and boundedness properties, J. Comput.
Phys. 225, 2016-2042.

[26] Hundsdorfer W., Ruuth S.J. & Spiteri R.J. (2003). Monotonicity-preserving
linear multistep methods, STAM J. Numer. Anal. 41, 605-623.

[27] Hundsdorfer W. & Verwer J.G. (2003). Numerical solution of time-
dependent advection-diffusion-reaction equations. Springer Series in Com-
put. Math. 33, Springer.



Bibliography 131

[28] Ketcheson D.I. (2009). Computation of optimal monotonicity preserving
general linear methods, Math. Comp. 78, 1497-1513.

[29] Koren B. (1993). A robust upwind discretization method for advection, dif-
fusion and source terms, in Vreugdenhil C.B. & Koren B., Numerical meth-
ods for advection-diffusion problems, Braunschweig: Vieweg, 117

[30] Kraaijevanger J.F.B.M. (1991). Contractivity of Runge-Kutta methods,
BIT 31, 482-528.

[31] Lax P.D. & Wendroft B. (1960). Systems of conservation laws, Comm.Pure
Appl.Math., 13, 217-237.

[32] Lenferink H.W.J. (1989). Contractivity preserving explicit linear multistep
methods, Numer. Math. 55, 213-223.

[33] Lenferink HW.J. (1991). Contractivity preserving implicit linear multistep
methods, Math. Comp. 56, 177-199.

[34] LeVeque R.J. (1992). Numerical methods for conservation laws, Lecture
Notes in Mathematics, ETH Zurich, Birkhauser Verlag, Basel.

[35] LeVeque R.J. (2002). Finite volume methods for hyperbolic problems, Cam-
bridge Texts in Applied Mathematics, Cambridge University Press.

[36] Pham Thi N.N., Hundsdorfer W. & Sommeijer B.P. (2006). Positivity for
explicit two-step methods in linear multistep and one-leg form BIT 46, 875—
882

[37] Ruuth S.J. (2006). Global optimization of explicit strong-stability-
preserving Runge-Kutta methods, Math. Comp. 75, 183-207.

[38] Ruuth S.J. & Hundsdorfer W. (2005). High-order linear multistep meth-
ods with general monotonicity and boundedness properties, J. Comput.
Phys. 209, 226-248

[39] Sand J. (1986). Circle contractive linear multistep methods, BIT 26, 114—
122.

[40] Shu C.-W. (1988). Total-variation-diminishing time discretizations, STAM
J. Sci. Stat. Comp. 9, 1073-1084.

[41] Shu C.-W. & Osher S. (1988). Efficient implementation of essentially
nonoscillatory shock-capturing schemes, J. Comput. Phys. 77, 439-471

[42] Spijker M.N. (1983). Contractivity in the numerical solution of initial value
problems, Numer. Math. 42, 271-290.

[43] Spijker M.N. (2007). Stepsize restrictions for general monotonicity in nu-
merical initial value problems, STAM J. Numer. Anal. 45, 1226-1245.



132 Bibliography

[44] Spiteri R.J. & Ruuth S.J. (2002). A new class of optimal high-order strong-
stability-preserving time discretization methodss, STAM J. Numer. Anal. 40,
469-491.

[45] Vanselov R. (1983). Nonlinear stability behaviour of linear multistep meth-
ods, BIT 23, 388-396.

[46] Van Leer B. (1974). Towards the ultimate conservative difference scheme

1I. Monotonicity and conservation combined in a second order scheme, J.
Comp. Phys. 14, 361-370.



Summary

This thesis deals with the numerical solution of systems of ordinary differential
equations (ODEs), and in particular ODEs that are obtained by spatial dis-
cretization of conservation laws. For such problems, steep gradients or discon-
tinuities in the solutions are common. To ensure convergence of the numerical
approximations towards the physically relevant exact solutions, it is important
that the numerical methods posses certain boundedness or monotonicity prop-
erties. In this thesis we focus on such properties for the time discretizations.

For the time discretization we consider a wide class of methods, the so-called
general linear methods. Well-known examples of such methods are Runge-Kutta
methods and linear multistep methods. It is known from the literature that
some classes of Runge-Kutta methods and linear multistep methods allow a
representation, the so-called Shu-Osher form, from which monotonicity proper-
ties are easily deduced under suitable assumptions on the systems of ODEs and
appropriate conditions on the stepsize.

There are, however, many methods that seem to perform well in practice, but
for which there are no appropriate Shu-Osher forms. For this reason we study
boundedness properties that are weaker than the monotonicity properties from
the literature.

The thesis contains an introduction and four chapters. These four chapters
contain material from papers that have been published or submitted for publi-
cation in scientific journals. The introduction is written with the intention to
be understandable for the reader who is not a specialist in the field.

Chapter I presents a generic framework for deriving the largest stepsizes for
which boundedness is still guaranteed. These results can be applied to numerical
methods that are not included in the standard monotonicity theory from the
literature.

However, these conditions on the stepsizes are not always easy to determine
for concrete general linear methods. In Chaper II we therefore study special
bounds that allow easier verification, and which are still applicable to cases
where the standard monotonicity theory does not hold. These special bounds
are relevant for a class of functionals that is wider than the class of seminorms,
allowing statements on preservation of non-negativity, for example.

In Chapter III we obtain necessary and sufficient conditions for boundedness
of linear multistep methods. These conditions are relatively transparant and
easy to verify for given classes of methods. In this chapter, also conditions are
obtained that ensure monotonicity for combinations of linear multistep methods
and Runge-Kutta starting procedures.
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Finally, in Chapter IV boundedness and monotonicity properties are stud-
ied for the so-called one-leg multistep methods. It is found that the maximal
stepsizes for boundedeness of a one-leg method are the same as for the cor-
responding linear multistep method, but the conditions for monotonicity with
Runge-Kutta starting procedures can lead to very different stepsizes.



Samenvatting

Dit proefschrift behandelt het numerieke oplossen van systemen van gewone dif-
ferentiaalvergelijkingen, met name systemen die worden verkregen door ruimte-
lijke discretisatie van behoudswetten. De oplossingen van dergelijke problemen
hebben vaak zeer steile hellingen of zelfs discontinuiteiten. Om zeker te zijn van
convergentie van de numerieke benaderingen naar de fysisch relevante oplossin-
gen, is het belangrijk dat de numerieke methoden bepaalde begrensdheids- of
monotoniciteitseigenschappen bezitten.

Voor de tijdsdiscretisatie bekijken we een brede klasse van numerieke me-
thoden, de zogenaamde ‘general linear methods’. Bekende voorbeelden van
zulke methoden zijn Runge-Kutta methoden en lineaire meerstapsmethoden.
Het is bekend uit de literatuur dat sommige klassen van Runge-Kutta en li-
neaire meerstapsmethoden in een geschikte vorm geschreven kunnen worden, de
zogenaamde Shu-Osher vorm, waaruit monotoniciteitseigenschappen gemakke-
lijk afgeleid kunnen worden, onder geschikte aannamen voor de systemen van
gewone differentiaalvergelijkingen en passende voorwaarden op de stapgrootte.

Er zijn echter vele methoden die goed werken in de praktijk, maar waar-
voor er geen geschikte Shu-Osher vorm bestaat. Om deze reden bestuderen
we begrensdheidseigenschappen die zwakker zijn dan de monotoniciteitseigen-
schappen uit de literatuur.

Het proefschrift bevat een inleiding en vier hoofdstukken. Deze vier hoofd-
stukken bevatten materiaal uit artikelen die gepubliceerd zijn of aangeboden
voor publicatie in wetenschappelijke tijdschriften. De inleiding is geschreven
met de intentie om begrijpelijk te zijn voor lezers die geen specialist in het
vakgebied zijn.

Hoofdstuk I geeft een algemeen kader voor het afleiden van de maximale
stapgrootten waarvoor begrensdheid nog gegarandeerd is. Deze resultaten kun-
nen worden toegepast op numerieke methoden waarvoor de standaard mono-
toniciteitstheorie uit de literatuur niet van toepassing is.

Deze voorwaarden op de stapgrootten zijn echter niet altijd eenvoudig te
bepalen voor concrete numerieke methoden. In hoofdstuk II bestuderen we
daarom speciale vormen van begrensdheid die eenvoudiger na te gaan zijn, en die
nog steeds van toepassing zijn op gevallen waar de standaard monotoniciteits-
theorie niet geldig is. Deze vormen van speciale begrensheid zijn relevant voor
een klasse van functionalen die breder is dan de klasse van semi-normen, waar-
door, bijvoorbeeld, uitspraken over behoud van niet-negativiteit gedaan kunnen
worden.

In hoofdstuk III worden noodzakelijke en voldoende voorwaarden afgeleid
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voor begrensdheid van lineaire meerstapsmethoden. Deze voorwaarden zijn re-
latief transparant en gemakkelijk te controleren voor gegeven klassen van me-
thoden. In dit hoofdstuk worden ook voorwaarden verkregen die monotoniciteit
geven voor combinaties van lineaire meerstapsmethoden en Runge-Kutta start-
procedures.

Ten slotte, in hoofdstuk IV worden begrensdheids- en monotoniciteitseigen-
schappen bestudeerd voor de zogenaamde ‘one-leg’ meerstapsmethoden. Het
blijkt dat de maximale stapgrootten voor begrensdheid van een one-leg me-
thode dezelfde zijn als voor de bijbehorende lineaire meerstapsmethode, maar
de voorwaarde voor monotoniciteit met een Runge-Kutta startprocedure kan
zeer verschillende stapgrootten opleveren.
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